Закон кулона определение и формула

Содержание

Закон Кулона: определение электрического поля, электрический диполь

Закон кулона определение и формула

В статье расскажем про электрические заряды и электрификации тел, аддитивность полей и определение электрического поля, подробно разберем закон Кулона и электрический диполь. В конце статьи будет разобранная задача на электрическое поле.

Электрические заряды и электрификация тел

Электрические заряды, положительные и отрицательные, квантуются, то есть имеют наименьшее значение, которое дальше невозможно разделить.

 Нагрузки не могут быть созданы или уничтожены в том смысле, что общая нагрузка в любом процессе остается постоянной. Когда атом не ионизирован, его полный заряд равен нулю.

 Атомы с избыточным отрицательным зарядом называются анионами, а с недостатком отрицательного заряда (с избыточным положительным зарядом) мы называем катионами.

Электрификация тел заключается в переносе нагрузки с одного из них на другой. Проще говоря, тела могут быть наэлектризованы их взаимным трением, что связано с реконструкцией двойного электрического слоя, расположенного на поверхности каждого из этих тел.

 Другим способом электрификации является электрификация индукцией, как показано на рисунках ниже. Здесь металлические сферы (белые), установленные на изоляторе (черный стержень), подвергаются электрификации.

 Разделение зарядов происходит при приближении к отрицательно заряженному изоляционному стержню, наэлектризованному трением о ткань.

В системе СИ единица измерения составляет 1 кулон (1 С). Статический заряд составляет порядка 10 -6 С (микрокульм, около 10 13 электронов). Заряд электрона составляет 1,602 × 10 -19 с .

Формулировка и объяснение закона Кулона

Закон Кулона (1736 — 1806) — закон, описывающий силу взаимодействия между точечными электрическими зарядами Q и q, находящимися на расстоянии R и в покое друг с другом.

Сила взаимодействия таких зарядов или кулоновская сила описывается формулой:

В системе СИ:

Формула Кулона автоматически выражает тот факт, что высвобожденные нагрузки отталкивают друг друга.

Кулон показал, что для точечных нагрузок сила удара равна:

В более поздних, очень тщательных экспериментах было показано, что квадрат в знаменателе равен 2 с точностью 2 ± 2 × 10 -16 . Направление кулоновской силы совпадает с направлением прямой, соединяющей два точечных заряда. Уравнение Кулона применимо только к случаю точечных нагрузок.

 Когда распределение нагрузки является пространственным, то должна быть выполнена соответствующая сумма или интегрирование.

 Помимо того, что закон Кулона применяется только к точечным нагрузкам, он описывает силу, действующую между ними только тогда, когда заряды находятся в покое друг с другом.

Закон Кулона в диэлектриках

Уменьшение напряженности поля в диэлектриках в ε-кратном направлении имеет большое практическое значение. Одним из основных является уменьшение кулоновской силы в ε-кратном размере при погружении взаимодействующих зарядов в диэлектрик:

Благодаря этому эффекту возможно растворить вещество с ионными связями в растворителях с высокой проницаемостью ε. В частности, возможно засоление посуды, поскольку в воде с огромным значением ε = 81 кристалл NaCl, состоящий из катионов Na+ и анионов Cl—, поддерживаемый кулоновскими силами, «распадается» при переходе в раствор электролита.

Определение электрического поля (Е)

Электрическое поле (напряженность поля) E в данной точке определяется как значение, равное отношению силы F, действующей на положительный испытательный заряд q, к значению нагрузки:

Движение заряженных частиц в поле происходит под действием силы F = Q*E.

Аддитивность полей

Поле E является аддитивным вектором, что означает, что результирующее электрическое поле представляет собой векторную сумму полей 1 , 2 , 3 …, полученных из отдельных зарядов:

Линии напряженности электрических полей

Концепция силовых линий поля была также введена Майклом Фарадеем (1791-1867). Линии напряженности поля представляют собой воображаемые кривые в пространстве, находящиеся в каждой точке, касающейся вектора E в этой точке.

 Это также означает, что в каждой точке линии поля имеется касательный вектор силы, действующий в этом поле для испытательной нагрузки (небольшой положительный заряд).

 Как показано на рисунке ниже, силовая линия — это траектория положительного испытательного заряда (маленький красный шарик), движущегося в поле E , причем сила F является результирующей (векторной суммой) двух сил: силы, отталкивающей испытательный заряд от положительного заряда Q, и силы притяжения испытательная нагрузка на отрицательный заряд q. Такая картина силовых линий верна только тогда, когда пренебрегают силами инерции (центробежными), возникающими из-за ненулевой массы груза. Линии напряженности поля никогда не пересекаются друг с другом. Представляя силовые линии, принимается соглашение о вытягивании, согласно которому плотность силовых линий пропорциональна напряженности поля в этом месте. Силовые линии в окрестности системы двух точечных нагрузок, положительной и отрицательной, одинакового абсолютного значения показаны на рисунке:

Один заряд, помещенный в вакуум, окружен радиальной системой силовых линий.

Электрический диполь

Электрический диполь представляет собой жесткую систему из двух точечных нагрузок + Q и -Q, удаленных друг от друга на 1.

Диполь помещается в однородное электрическое поле E, так что вектор E образует угол θ с линией, соединяющей два заряда, называемой осью диполя.

 Сила F 1 = QE направлена ​​в сторону поля, а сила F 2 = — QE в противоположном направлении. Обе эти силы создают пару сил, создающих момент силы:

Произведение заряда Ql на расстояние Q называется дипольным моментом. Вектор дипольного момента направлен от отрицательного к положительному заряду (в отличие от вектора для силовых линий поля).

Момент силы, действующей на диполь, выражается в виде векторного произведения.

Значение этого вектора:

Если электрическое поле не является однородным, то диполь действует не только как крутящий момент, но и как результирующая сила. Причина этого заключается в том, что оба дипольных заряда находятся в полях немного различной интенсивности, и силы, действующие на эти заряды, не уравновешены.

Ненулевым электрическим дипольным моментом обладают такие молекулы, как H2O, CO, …

Симметричные молекулы, например O2, N2, H2, … не имеют длительных дипольных моментов.

Единицей дипольного момента в системе СИ является C · m (кулон · метр). Поскольку это очень большая единица, в литературе обычно используется единица, называемая debay (D), которая происходит из системы CGS.

Два элементарных заряда (равных зарядам электрона или протона), разнесенных друг от друга на расстоянии 1 ангстрем (10 -10 м), создают дипольный момент со значением:

Задача

Найти электрическое поле E, создаваемое диполем. Для простоты находим это поле в плоскости, перпендикулярной оси диполя и проходящей через его центр:

Поля от положительных и отрицательных зарядов обозначены + и E — соответственно. Векторная сумма этих двух полей образует результирующее поле E = E+ + E_. Из-за симметричного положения точки, где мы исследуем поле, длины обоих E+ и E_ векторов — одинаковы:

Вертикальные компоненты полей E+ и E_ компенсируют друг друга, а сумма горизонтальных компонентов дает длину E искомого вектора E :

где p = Ql — дипольный момент диполя. Для r >> l (вдали от оси диполя) значение поля E равно:

Мы видим, что поле вокруг диполя исчезает с увеличением расстояния быстрее (как 1 / r 3 ), чем поле вокруг одиночного заряда, которое исчезает как 1 / r 2 .

Источник: https://meanders.ru/zakon-kulona.shtml

Единицы измерения заряда. Закон Кулона

Закон кулона определение и формула

В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш.

Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:

Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.

Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.

В векторной форме закон Кулона будет иметь вид:

Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.

Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.

Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.

В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.

Коэффициент k в формуле 1а) в СИ принимается равным:

И закон Кулона можно будет записать в так называемой «рационализированной» форме:

Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.

Величина ε0 в данной формуле – электрическая постоянная.

Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:

В системе СГС силу измеряют в динах: 1 дин = 1 г·см/с2, а расстояние в сантиметрах. Предположим, что q = q1 = q2, тогда из формулы (4) получим:

Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГСq. Ее размерность:

Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):

В СГС данная сила будет равна:

Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.

Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.

Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).

Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:

Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:

Поделив выражение (6) на (5) получим:

Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.

Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.

В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.

Но если в уравнении одновременно будет содержаться и магнитные, и электрические величины, то данное уравнение, записанное в системе Гаусса, будет отличаться от этого же уравнения, но записанного в системе СГСМ или СГСЭ множителем 1/с или 1/с2. Величина с равна скорости света (с = 3·1010 см/с) называется электродинамической постоянной.

Закон Кулона в системе СГС будет иметь вид:

Пример

На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.

Решение

Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:

Где е – положительный заряд капли масла, равный заряду электрона.

Силу ньютоновского притяжения можно выразить формулой:

Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи Fк = Fн, поэтому:

Масса капли выражена через произведение плотности ρ на объем V, то есть m = ρV, а объем капли радиуса R равен V = (4/3)πR3, откуда получаем:

В данной формуле постоянные π, ε0, γ известны; ε = 1; также известен и заряд электрона е = 1,6·10-19 Кл и плотность масла ρ = 780 кг/м3 (справочные данные). Подставив числовые значения в формулу получим результат: R = 0,363·10-7 м.

Источник: https://elenergi.ru/edinicy-izmereniya-zaryada-zakon-kulona.html

Закон Кулона простыми словами

Закон кулона определение и формула
В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними.

Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил.

В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле.

Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы.

Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия.

Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы.

Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна.

Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике.

Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н2*м2/Кл2. Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е0= 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором.

В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот.

Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования.

Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле.

Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода.

Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Источник: https://samelectrik.ru/zakon-kulona-prostymi-slovami.html

Закон Кулона

Закон кулона определение и формула

  • 1 Закон Кулона
  • 2 Опыт Кулона
  • 3 Литература

В 1785 г. французский физик Шарль Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон и может быть установлен только опытным путем. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q1| и |q2|, то закон Кулона можно записать в следующей форме:

\(~F = k \cdot \dfrac{|q_1| \cdot |q_2|}{r2}\) , (1) где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ \(~k = \dfrac{1}{4 \pi \cdot \varepsilon_0} = 9 \cdot 109\) Н·м2/Кл2, где ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/Н·м2 .

Формулировка закона:

сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эту силу называют кулоновской.

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, т.к. только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет.

Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними.

В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела. Подобные силы называют центральными.

Если через \(~\vec F_{1,2}\) обозначить силу действующую на первый заряд со стороны второго, а через \(~\vec F_{2,1}\) – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, \(~\vec F_{1,2} = -\vec F_{2,1}\) .

Обозначим через \(\vec r_{1,2}\) радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

\(~\vec F_{1,2} = k \cdot \dfrac{q_1 \cdot q_2}{r3_{1,2}} \cdot \vec r_{1,2}\) . (2)

  • Рис. 1
  • Рис. 2

Если знаки зарядов q1 и q2 одинаковы, то направление силы \(~\vec F_{1,2}\) совпадает с направлением вектора \(~\vec r_{1,2}\) ; в противном случае векторы \(~\vec F_{1,2}\) и \(~\vec r_{1,2}\) направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях.

Возникла потребность дать им количественную интерпретацию.

Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Ш. Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

\(~F_{ynp} = k \cdot \dfrac{d4}{l} \cdot \varphi\) ,

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10-8 Н.

  • а
  • б

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см.

На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1.

Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11.

В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10). С помощью головки 1 это коромысло возвращалось в исходное положение.

По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α. Сила же взаимодействия шариков была пропорциональна φ, т. е.

по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке).

Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально.

При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков:

\(~F \sim q_1 \cdot q_2\) .Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ. Затем поворотом головки 1 уменьшался этот угол до γ1.

Общий угол закручивания φ1 = α1 + (γγ1)(α1 – угол поворота головки). При уменьшении углового расстояния шариков до γ2 общий угол закручивания φ2 = α2 + (γγ2) . Было замечено, что, если γ1 = 2γ2, ТО φ2 = 4φ1, т. е.

при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным).

Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

\(~F \sim \dfrac{1}{r2}\) .

Литература

  1. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
  2. Вольштейн С. Л. и др. Методы физической науки в школе: Пособие для учителя / С.Л. Вольштейн, С.В. Позойский, В.В. Усанов; Под ред. С.Л. Вольштейна. – Мн.: Нар. асвета, 1988. – 144 с.

Источник: http://www.physbook.ru/index.php/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%9A%D1%83%D0%BB%D0%BE%D0%BD%D0%B0

Формулировки

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. Расположение зарядов в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где  — сила, с которой заряд 1 действует на заряд 2;  — величина зарядов;  — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — );  — коэффициент пропорциональности.

Коэффициент k

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

где ≈ 8,85418781762·10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется диэлектрическая проницаемость среды ε.

В СГСЭ

В СИ

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия.

В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.

Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

.

Здесь m — масса электрона, е — его заряд,  — абсолютная величина радиус-вектора j-го электрона , а .

Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов.

Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

Закон Кулона с точки зрения квантовой электродинамики

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами.

Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения.

Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности.

При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.

История

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил, что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение о том, что Д.

Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г.

Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «сила электрического притяжения подчиняется тем же законам, что и сила тяжести, а следовательно, зависит от квадрата расстояния между зарядами».

Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785).

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона, принцип суперпозиции и уравнения Максвелла

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и .

То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей.

Степень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами.

Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2.

Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.

86·10−13 м , где  — масса электрона,  — постоянная Планка,  — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.

Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид :

где  — комптоновская длина волны электрона,  — постоянная тонкой структуры и .

На расстояниях порядка ~ 10−18 м, где  — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона.

Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом , можно описать зависимостью вида .

Эффективный заряд зависит от расстояния по логарифмическому закону:

где,

 — т. н. постоянная тонкой структуры ≈7.3·10−3; — т. н. классический радиус электрона ≈2.8·10−13 см..

Эффект Юлинга

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 МГц.

Закон Кулона и сверхтяжелые ядра

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона

Значение закона Кулона в истории науки

Закон Кулона является первым открытым количественным и сформулированным на математическом языке фундаментальным законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме.

См. также

  • Электрическое поле
  • Дальнодействие
  • Закон Био — Савара — Лапласа
  • Закон притяжения
  • Кулон, Шарль Огюстен де
  • Кулон (единица измерения)
  • Принцип суперпозиции
  • Уравнения Максвелла

Ссылки

  • Закон Кулона (видеурок, программа 10 класса)
  • Закон Кулона на

Примечания

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 17. — 656 с. — ISBN 5-9221-0227-3.

Источник: https://www.turkaramamotoru.com/ru/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD-%D0%9A%D1%83%D0%BB%D0%BE%D0%BD%D0%B0-189206.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.