Таблица критических значений спирмена

Содержание

Коэффициент корреляции Спирмена. Коэффициент ранговой корреляции Спирмена

Таблица критических значений спирмена

Дисциплина “высшая математика” у некоторых вызывает неприятие, так как поистине не всем дано ее понять.

Но те, кому посчастливилось изучать этот предмет и решать задачи, используя различные уравнения и коэффициенты, могут похвастаться практически полной в ней осведемленности.

В психологической науке существует не только гуманитарная направленность, но и определенные формулы и способы для математической проверки выдвигаемой в ходе исследований гипотезы. Для этого применяются различные коэффициенты.

Коэффициент корреляции Спирмена

Это распространенное измерение по определению тесноты связи между какими-либо двумя признаками. Коэффициент еще называют непараметрическим методом. Он показывает статистику связи. То есть мы знаем, например, что у ребенка агрессия и раздражительность связаны между собой, а коэффициент корреляции рангов Спирмена показывает статистическую математическую связь этих двух признаков.

Как вычисляется ранговый коэффициент?

Естественно, что для всех математических определений или величин существуют свои формулы, по которым они вычисляются. Ею обладает и коэффициент корреляции Спирмена. Формула у него следующая:

С первого взгляда формула не совсем понятна, но если разобраться, все очень легко вычисляется:

  • n – это количество признаков или показателей, которые проранжированы.
  • d – разность определенных двух рангов, соответствующих конкретным двум переменным каждого испытуемого.
  • ∑d2 – сумма всех квадратов разностей рангов признака, квадраты которых вычисляются отдельно для каждого ранга.

Область применения математической меры связи

Для применения рангового коэффициента необходимо, чтобы количественные данные признака были проранжированы, то есть им был присвоен определенный номер в зависимости от места, на котором расположен признак, и от его значения. Доказано, что два ряда признаков, выраженных в числовом виде, несколько параллельны между собой. Коэффициент ранговой корреляции Спирмена определяет степень этой параллельности, тесноты связи признаков.

Для математической операции по расчету и определению связи признаков с помощью указанного коэффициента нужно произвести некоторые действия:

  1. Каждому значению какого-либо испытуемого или явления присваивается номер по порядку – ранг. Он может соответствовать значению явления по возрастанию и по убыванию.
  2. Дальше сопоставляются ранги значения признаков двух количественных рядов для того, чтобы определить разность между ними.
  3. В отдельном столбце таблицы для каждой полученной разности прописывается ее квадрат, а внизу результаты суммируются.
  4. После этих действий применяется формула, по которой рассчитывается коэффициент корреляции Спирмена.

Свойства коэффициента корреляции

К основным свойствам коэффициента Спирмена относят следующие:

  • Измерение значений в пределах от -1 до 1.
  • Знак коэффициента интерпретаций не имеет.
  • Теснота связи определяется по принципу: чем выше величина, тем теснее связь.

Для проверки связи признаков между собой необходимо выполнить определенные действия:

  1. Выдвигается нулевая гипотеза (H0), она же основная, затем формулируется другая, альтернативная первой (H1). Первая гипотеза будет заключаться в том, что коэффициент корреляции Спирмена равняется 0 – это значит, что связи не будет. Вторая, наоборот, гласит, что коэффициент не равен 0, тогда связь есть.
  2. Следующим действием будет нахождение наблюдаемого значения критерия. Оно находится по основной формуле коэффициента Спирмена.
  3. Далее находятся критические значения заданного критерия. Это можно сделать только с помощью специальной таблицы, где отображаются различные значения по заданным показателям: уровень значимости (l) и число, определяющее объем выборки (n).
  4. Теперь нужно сравнить два полученных значения: установленного наблюдаемого, а также критического. Для этого необходимо построить критическую область. Нужно начертить прямую линию, на ней отметить точки критического значения коэффициента со знаком “-” и со знаком”+”. Слева и справа от критических значений полукругами от точек откладываются критические области. Посередине, объединяя два значения, отмечается полукругом ОПГ.
  5. После этого делается вывод о тесноте связи между двумя признаками.

Где лучше использовать эту величину

Самой первой наукой, где активно использовался этот коэффициент, была психология.

Ведь это наука, не основывающаяся на цифрах, однако для доказательства каких-либо важных гипотез, касающихся развития отношений, черт характера людей, знаний студентов, требуется статистическое подтверждение выводов.

Также его используют в экономике, в частности, при валютных оборотах. Здесь оцениваются признаки без статистики.

Очень удобен коэффициент ранговой корреляции Спирмена в этой области применения тем, что оценка производится независимо от распределения переменных, так как они заменяются ранговым числом. Активно применяется коэффициент Спирмена в банковском деле. Социология, политология, демография и другие науки также используют его в своих исследованиях. Результаты получаются быстро и максимально точно.

Удобно и быстро используется коэффициент корреляции Спирмена в Excel. Здесь существуют специальные функции, которые помогают быстро получить необходимые значения.

Какие еще коэффициенты корреляции существуют?

Кроме того, что мы узнали про коэффициент корреляции Спирмена, существуют еще различные корреляционные коэффициенты, позволяющие измерить, оценить качественные признаки, связь между количественными признаками, тесноту связи между ними, представленными в ранговой шкале. Это такие коэффициенты, как биссериальный, рангово-биссериальный, контенгенции, ассоциации, и так далее. Коэффициент Спирмена очень точно показывает тесноту связи, в отличие от всех остальных методов ее математического определения.

Источник: https://FB.ru/article/149593/koeffitsient-korrelyatsii-spirmena-koeffitsient-rangovoy-korrelyatsii-spirmena

Корреляционный анализ Спирмена онлайн на примере корреляции в психологии

Таблица критических значений спирмена

При наличии двух рядов значений, подвергающихся ранжированию, рационально рассчитывать ранговую корреляцию Спирмена.

Такие ряды могут представляться:

  • парой признаков, определяемых в одной и той же группе исследуемых объектов;
  • парой индивидуальных соподчиненных признаков, определяемых у 2 исследуемых объектов по одинаковому набору признаков;
  • парой групповых соподчиненных признаков;
  • индивидуальной и групповой соподчиненностью признаков.

Метод предполагает проведение ранжирования показателей в отдельности для каждого из признаков.

Наименьшее значение имеет наименьший ранг.

Этот метод относится к непараметрическому статистическому методу, предназначенному для установления существования связи изучаемых явлений:

  • определение фактической степени параллелизма между двумя рядами количественных данных;
  • оценка тесноты выявленной связи, выражаемой количественно.

Корреляционный анализ

Статистический метод, предназначенный для выявления существования зависимости между 2 и более случайными величинами (переменными), а также ее силы, получил название корреляционного анализа.

Получил свое название от correlatio (лат.) – соотношение.

При его использовании возможны варианты развития событий:

  • наличие корреляции (положительная либо отрицательная);
  • отсутствие корреляции (нулевая).

В случае установления зависимости между переменными речь идет об их коррелировании. Иными словами, можно сказать, что при изменении значения Х, обязательно будет наблюдаться пропорциональное изменение значения У.

В качестве инструментов используются различные меры связи (коэффициенты).

На их выбор оказывает влияние:

  • способ измерения случайных чисел;
  • характер связи между случайными числами.

Существование корреляционной связи может отображаться графически (графики) и с помощью коэффициента (числовое отображение).

Корреляционная связь характеризуется такими признаками:

  • сила связи (при коэффициенте корреляции от ±0,7 до ±1 – сильная; от ±0,3 до ±0,699 – средняя; от 0 до ±0,299 – слабая);
  • направление связи (прямая или обратная).

Цели корреляционного анализа

Корреляционный анализ не позволяет установить причинную зависимость между исследуемыми переменными.

Он проводится с целью:

  • установления зависимости между переменными;
  • получения определенной информации о переменной на основе другой переменной;
  • определения тесноты (связи) этой зависимости;
  • определение направления установленной связи.

Методы корреляционного анализа

Данный анализ может выполняться с использованием:

  • метода квадратов или Пирсона;
  • рангового метода или Спирмена.

Метод Пирсона применим для расчетов требующих точного определения силы, существующей между переменными. Изучаемые с его помощью признаки должны выражаться только количественно.

Для применения метода Спирмена или ранговой корреляции нет жестких требований в выражении признаков – оно может быть, как количественным, так и атрибутивным. Благодаря этому методу получается информация не о точном установлении силы связи, а имеющая ориентировочный характер.

В рядах переменных могут содержаться открытые варианты. Например, когда стаж работы выражается такими значениями, как до 1 года, более 5 лет и т.д.

Коэффициент корреляции

Статистическая величина характеризующая характер изменения двух переменных получила название коэффициента корреляции либо парного коэффициента корреляции. В количественном выражении он колеблется в пределах от -1 до +1.

Наиболее распространены коэффициенты:

  • Пирсона – применим для переменных принадлежащих к интервально шкале;
  • Спирмена – для переменных порядковой шкалы.

Ограничения использования коэффициента корреляции

Получение недостоверных данных при расчете коэффициента корреляции возможно в тех случаях, когда:

  • в распоряжении имеется достаточное количество значений переменной (25-100 пар наблюдений);
  • между изучаемыми переменными установлено, например, квадратичное соотношение, а не линейное;
  • в каждом случае данные содержат больше одного наблюдения;
  • наличие аномальных значений (выбросов) переменных;
  • исследуемые данные состоят из четко выделяемых подгрупп наблюдений;
  • наличие корреляционной связи не позволяет установить какая из переменных может рассматриваться в качестве причины, а какая – в качестве следствия.

Проверка значимости корреляции

Для оценки статистических величин используется понятие их значимости или же достоверности, характеризующей вероятность случайного возникновения величины либо крайних ее значений.

Наиболее распространенным методом определения значимости корреляции является определение критерия Стьюдента.

Его значение сравнивается с табличным, количество степенней свободы принимается как 2. При получении расчетного значения критерия больше табличного, свидетельствует о значимости коэффициента корреляции.

При проведении экономических расчетов достаточным считается доверительный уровень 0,05 (95%) либо 0,01 (99%).

Ранги Спирмена

Коэффициент ранговой корреляции Спирмена позволяет статистически установить наличие связи между явлениями. Его расчет предполагает установление для каждого признака порядкового номера – ранга. Ранг может быть возрастающим либо убывающим.

Количество признаков, подвергаемых ранжированию, может быть любым. Это достаточно трудоемкий процесс, ограничивающий их количество. Затруднения начинаются при достижении 20 признаков.

Для расчета коэффициента Спирмена пользуются формулой:

в которой:

n – отображает количество ранжируемых признаков;

d – не что иное как разность между рангами по двум переменным;

а ∑(d2) – сумма квадратов разностей рангов.

Применение корреляционного анализа в психологии

Статистическое сопровождение психологических исследований позволяет сделать их более объективными и высоко репрезентативными. Статистическая обработка данных полученных в ходе психологических экспериментов способствует извлечению максимума полезной информации.

Наиболее широкое применение в обработке их результатов получил корреляционный анализ.

Уместным является проведение корреляционного анализа результатов, полученных при проведении исследований:

  • тревожности (по тестам R. Temml, M. Dorca, V. Amen);
  • семейных взаимоотношений («Анализ семейных взаимоотношений» (АСВ) опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • уровня интернальности-экстернальности (опросник Е.Ф. Бажина, Е.А. Голынкиной и А.М. Эткинда);
  • уровня эмоционального выгорания у педагогов (опросник В.В. Бойко);
  • связи элементов вербального интеллекта учащихся при разно профильном обучении (методика К.М. Гуревича и др.);
  • связи уровня эмпатии (методика В.В. Бойко) и удовлетворенностью браком (опросник В.В. Столина, Т.Л. Романовой, Г.П. Бутенко);
  • связи между социометрическим статусом подростков (тест Jacob L. Moreno) и особенностями стиля семейного воспитания (опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • структуры жизненных целей подростков, воспитанных в полных и неполных семьях (опросник Edward L. Deci, Richard M. Ryan Ryan).

Краткая инструкция к проведению корреляционного анализа по критерию Спирмена

Проведение корреляционного анализа с использованием метода Спирмена выполняется по следующему алгоритму:

  • парные сопоставимые признаки располагаются в 2 ряда, один из которых обозначается с помощью Х, а другой У;
  • значения ряда Х располагаются в порядке возрастания либо убывания;
  • последовательность расположения значений ряда У определяется их соответствием значений ряда Х;
  • для каждого значения в ряду Х определить ранг — присвоить порядковый номер от минимального значения к максимальному;
  • для каждого из значений в ряду У также определить ранг (от минимального к максимальному);
  • вычислить разницу (D) между рангами Х и У, прибегнув к формуле D=Х-У;
  • полученные значения разницы возводятся в квадрат;
  • выполнить суммирование квадратов разниц рангов;
  • выполнить расчеты по формуле:

Пример корреляции Спирмена

Необходимо установить наличие корреляционной связи между рабочим стажем и показателем травматизма при наличии следующих данных:

Рабочий стаж в годах Травматизм на 100 работающих
до 1 года24
1-216
3-412
5-612
7 и более6

Наиболее подходящим методом анализа является ранговый метод, т.к. один из признаков представлен в виде открытых вариантов: рабочий стаж до 1 года и рабочий стаж 7 и более лет.

Решение задачи начинается с ранжирования данных, которые сводятся в рабочую таблицу и могут быть выполнены вручную, т.к. их объем не велик:

Рабочий стажЧисло травмПорядковые номера (ранги)Разность ранговКвадрат разности рангов
d(х-у)
до 1 года2415-416
1-21624-24
3-41232,5+0,50,25
5-61242,5+1,52,5
7 и более651+416
Σ d2 = 38,5

Появление дробных рангов в колонке связано с тем, что в случае появления вариант одинаковых по величине находится среднее арифметическое значение ранга.

В данном примере показатель травматизма 12 встречается дважды и ему присваиваются ранги 2 и 3, находим среднее арифметическое этих рангов (2+3)/2= 2,5 и помещаем это значение в рабочую таблицу для 2 показателей.

Выполнив подстановку полученных значений в рабочую формулу и произведя несложные расчёты получаем коэффициент Спирмена равный -0,92

Отрицательное значение коэффициента свидетельствует о наличии обратной связи между признаками и позволяет утверждать, что небольшой стаж работы сопровождается большим числом травм. Причем, сила связи этих показателей достаточно большая.Следующим этапом расчётов является определение достоверности полученного коэффициента:

• рассчитывается его ошибка и критерий Стьюдента

Источник: https://forex365.ru/indicators/korrelyacionnyj-analiz-spirmena.html

Коэффициент корреляции Спирмена

Таблица критических значений спирмена

  • Здравствуйте! Вы на сайте автора работ по психологии.

    Здесь много моих статей, которые помогут написать ВКР.

    Имею психологическое образование и большой опыт написания работ.

    Быстро и качественно пишу на заказ любые работы по психологии.

    Правки руководителя и разъяснения включены в стоимость.

    Вы всегда можете связаться со мной.

    Пишите, звоните, оставляйте заявку на сайте. Буду рад помочь.

Коэффициент корреляции Спирмена – статистический критерий, который наиболее часто используется при обработке эмпирических данных в курсовых, дипломных и магистерских работах по психологии.

Этот критерий относится к типу непараметрических и не требует, чтобы данные были распределены по нормальному закону.

Достаточно, если психологические показатели представлены в порядковой шкале, то есть учитывается только тот факт, что один показатель больше или меньше, чем другой.

Расчет коэффициента корреляции Спирмена

При проведении эмпирического исследования в дипломной по психологии для расчета коэффициента корреляции Спирмена удобнее пользоваться статистическими программами. Однако, этот критерий нетрудно рассчитать и вручную.

Пример расчета коэффициента корреляции Спирмена

Предположим, в рамках дипломной работы по психологии проводится исследование влияния климата в коллективе на состояние сотрудников. Одна из задач исследования состоит в выявлении взаимосвязи между климатом и эмоциональным истощением сотрудников.

Выдвигаем гипотезу – существует отрицательная взаимосвязь между социально-психологическим климатом в коллективе и степенью истощения сотрудников.

В таблице приводятся данные, отражающие этапы расчета коэффициентов ранговой корреляции Спирмена. Суть расчета сводится к тому, что от собственно значений переходим к их рангам (ранг отражает положение показателя в общем списке и записывается в виде натурального числа). Далее находятся разности между рангами, эти разности возводятся в квадрат и суммируются.

Эмоциональное истощение (Х)

Психологический климат (Y)

Ранг Х

Ранг Y

Ранг Х-Ранг Y

(Ранг Х-Ранг Y)2

1

15

0,7

6

8

-2

4

2

15

0,6

6

5,5

0,5

0,25

3

15

0,6

6

5,5

0,5

0,25

4

13

0,5

1

3

-2

4

5

15

0,7

6

8

-2

4

6

14

0,5

2

3

-1

1

7

15

0,7

6

8

-2

4

8

15

0,5

6

3

3

9

9

16

1

10

10

0

0

10

15

0

6

1

5

25

Сумма

0

51,5

Формула расчёта коэффициента корреляции Спирмена

                  Сумма(D2)

R= 1 – 6—————-

                 N(N2-1)

D – разность между рангами

Сложность расчёта корреляций Спирмена вручную связана с необходимостью вводить поправки на одинаковые ранги, что достаточно трудоемко.

Поправка для Х:

Тх=(73-7)/12=336/12=28

Поправка для Y:

Тy=(2(33-3)+(23-2))/12=(48+6)/12=4,5

                  Сумма(D2)+Тх+ Тy                   51,5+28+4,5

Rэмп= 1 – 6———————= 1 – 6—————————=

                         N(N2-1)                            10(10*10 – 1)

                84                    504

=1- 6 ———— =1 – ———-=1 – 0,50909= 0,4909

               990                 990

В специальной таблице находим значение критического значения коэффициента ранговой корреляции для выборки из 10 человек и для уровня значимости 0,05:

Rкр (10)=0,64

Rэмп˂ Rкр (0,49˂0,64)

Следовательно, не существует связи между социально-психологическим климатом в коллективе и степенью истощения сотрудников. Для интерпретации данного результаты (а интерпретировать результаты статистических расчётов в дипломах по психологии очень важно) можно сказать следующее.

Возможно, в коллективе сотрудников, где проводилось исследование, существуют социально-психологические или организационные факторы, которые опосредуют влияние климата в коллективе на эмоциональное истощение сотрудников.

В связи с этим прямая взаимосвязь между этими показателями нивелируется.

Анализ результатов расчета коэффициентов ранговой корреляции Спирмена

Если коэффициент ранговой корреляции Спирмена вычисляется с помощью статистической программы, то она сама выделяет статистически значимые корреляции при заданном уровне статистической значимости (0,05 или 0,01).

Если расчёт коэффициента ранговой корреляции Спирмена проводится вручную, то после получения эмпирического значения его нужно сравнить с критическим. Критические значения коэффициентов ранговой корреляции Спирмена приводятся в специальных таблицах для разного объема выборки и уровня статистической значимости.

Далее нужно сравнить эмпирический и критический коэффициенты:

  • если значение эмпирического коэффициента ранговой корреляции больше или равно критическому, то делается вывод о существовании статистически значимой корреляционной связи между показателями;
  • если значение эмпирического коэффициента ранговой корреляции меньше (как в приведенном выше примере) критического, следовательно, статистически значимой корреляционной связи между показателями нет.

Несмотря на различные алгоритмы расчета корреляций Пирсона и Спирмена логика их анализа и интерпретации одинакова.

Различия коэффициентов корреляций Пирсона и Спирмена

На защите дипломных работ по психологии студента могут спросить о причинах, по которым он выбрал тот или иной тип коэффициента корреляции. То есть, важно понимать, чем принципиально различаются коэффициенты корреляции Пирсона и Спирмена.

Не вдаваясь в математические тонкости, можно сказать следующее:

  1. Для корреляций Пирсона данные должны быть распределены нормально, или выборка должна быть достаточно большой. Для корреляций Спирмена данные могут быть любыми.
  2. Корреляции Пирсона дают более точный результат о взаимосвязях показателей, чем корреляции Спирмена. В то же время коэффициент Пирсона более чувствителен к случайным выбросам показателей. Например, у всех испытуемых показатели тревожности находятся в диапазоне от 5 до 15, а у одного – 25 баллов. Испытуемый мог отвечать наобум, что привело к такому показателю и при расчёте по Пирсону это существенно исказит результат. В то же время на расчет коэффициента Спирмена такого рода выбросы не оказывают заметного влияния.

Таким образом, в курсовых, дипломных и магистерских работах по психологии для анализа взаимосвязей между показателями лучше использовать коэффициенты ранговой корреляции Спирмена.

Надеюсь, эта статья поможет вам написать работу по психологии самостоятельно. Если понадобится помощь, обращайтесь (все виды работ по психологии; статистические расчеты). Заказать 

Источник: http://dip-psi.ru/koeffitsiyent-korrelyatsii-spirmena

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.