Сила тяжести определение

Referat. Сила тяжести

Сила тяжести определение

Частным, но крайне важным для нас видом силы всемирного тяготения является сила притяжения тел к Земле. Эту силу называют силой тяжести. Согласно закону всемирного тяготения, она выражается формулой

\(~F_T = G \frac{mM}{(R+h)2}\) , (1)

где m – масса тела, М – масса Земли, R – радиус Земли, h – высота тела над поверхностью Земли. Сила тяжести направлена вертикально вниз, к центру Земли.

  • Более точно, помимо этой силы, в системе отсчета, связанной с Землей, на тело действует центробежная сила инерции \(~\vec F_c\) , которая возникает из-за суточного вращения Земли, и равна \(~F_c = m \cdot \omega2 \cdot r\) , где m – масса тела; r – расстояние между телом и земной осью. Если высота тела над поверхностью Земли мала по сравнению с ее радиусом, то \(~r = R \cos \varphi\) , где R – радиус Земли, φ – географическая широта, на которой находится тело (рис. 1). С учетом этого \(~F_c = m \cdot \omega2 \cdot R \cos \varphi\) .

Рис. 1

Силой тяжести называется сила, действующая на любое находящееся вблизи земной поверхности тело.

Она определяется как геометрическая сумма действующей на тело силы гравитационного притяжения к Земле \(~\vec F_g\) и центробежной силы инерции \(~\vec F_c\) , учитывающей эффект суточного вращения Земли вокруг собственной оси, т.е. \(~\vec F_T = \vec F_g + \vec F_c\) . Направление силы тяжести является направлением вертикали в данном пункте земной поверхности.

НО величина центробежной силы инерции очень мала по сравнению с силой притяжения Земли (их отношение составляет примерно 3∙10-3), то обычно силой \(~\vec F_c\) пренебрегают. Тогда \(~\vec F_T \approx \vec F_g\) .

Ускорение свободного падения

Сила тяжести сообщает телу ускорение, называемое ускорением свободного падения. В соответствии со вторым законом Ньютона

\(~\vec g = \frac{\vec F_T}{m}\) .

С учетом выражения (1) для модуля ускорения свободного падения будем иметь

\(~g_h = G \frac{M}{(R+h)2}\) . (2)

На поверхности Земли (h = 0) модуль ускорения свободного падения равен

\(~g = G \frac{M}{R2}\) ,

а сила тяжести равна

\(~\vec F_T = m \vec g\) .

Модуль ускорения свободного падения, входящего в формулы, равен приближенно 9,8 м/с2.

Из формулы (2) видно, что ускорение свободного падения не зависит от массы тела. Оно уменьшается при подъеме тела над поверхностью Земли: ускорение свободного падения обратно пропорционально квадрату расстояния тела от центра Земли.

Однако если высота h тела над поверхностью Земли не превышает 100 км, то при расчетах, допускающих погрешность ≈ 1,5%, этой высотой можно пренебречь по сравнению с радиусом Земли (R = 6370 км). Ускорение свободного падения на высотах до 100 км можно считать постоянным и равным 9,8 м/с2.

И все же у поверхности Земли ускорение свободного падения не везде одинаково. Оно зависит от географической широты: больше на полюсах Земли, чем на экваторе. Дело в том, что земной шар несколько сплюснут у полюсов. Экваториальный радиус Земли больше полярного на 21 км.

Другой, более существенной причиной зависимости ускорения свободного падения от географической широты является вращение Земли. Второй закон Ньютона справедлив в инерциальной системе отсчета.

Такой системой является, например, гелиоцентрическая система. Систему же отсчета, связанную с Землей, строго говоря, нельзя считать инерциальной.

Земля вращается вокруг своей оси и движется по замкнутой орбите вокруг Солнца.

Вращение Земли и сплюснутость ее у полюсов приводит к тому, что ускорение свободного падения относительно геоцентрической системы отсчета на разных широтах различно: на полюсах gпол ≈ 9,83 м/с2, на экваторе gэкв ≈ 9,78 м/с2, на широте 45° g ≈ 9,81 м/с2. Впрочем, в наших расчетах мы будем считать ускорение свободного падения приближенно равным 9,8 м/с2.

Из-за вращения Земли вокруг своей оси ускорение свободного падения во всех местах, кроме экватора и полюсов, не направлено точно к центру Земли.

Кроме того, ускорение свободного падения зависит от плотности пород, залегающих в недрах Земли. В районах, где залегают породы, плотность которых больше средней плотности Земли (например, железная руда), g больше. А там, где имеются залежи нефти, g меньше. Этим пользуются геологи при поиске полезных ископаемых.

Вес тела

Вес тела – это сила, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес.

Рассмотрим, например, тело, подвешенное к пружине, другой конец которой закреплен (рис. 2). На тело действует сила тяжести \(~\vec F_T = m \vec g\) направленная вниз. Оно поэтому начинает падать, увлекая за собой нижний конец пружины. Пружина окажется из-за этого деформированной, и появится сила упругости \(~\vec F_{ynp}\) пружины.

Она приложена к верхнему краю тела и направлена вверх. Верхний край тела будет поэтому «отставать» в своем падении от других его частей, к которым сила упругости пружины не приложена. Вследствие этого и тело деформируется. Возникает еще одна сила упругости – сила упругости деформированного тела. Она приложена к пружине и направлена вниз.

Вот эта сила и есть вес тела.

Рис. 2

По третьему закону Ньютона обе эти силы упругости равны по модулю и направлены в противоположные стороны. После нескольких колебаний тело на пружине оказывается в покое. Это значит, что сила тяжести \(~m \vec g\) по модулю равна силе упругости Fупр пружины. Но этой же силе равен и вес тела.

Таким образом, в нашем примере вес тела, который мы обозначим буквой \(~\vec P\) , по модулю равен силе тяжести:
\(~P = m g\) .

Второй пример. Пусть тело А находится на горизонтальной опоре В (рис. 3). На тело А действует сила тяжести \(~m \vec g\) и сила реакции опоры \(~\vec N\) .

Но если опора действует на тело с силой \(~\vec N\) то и тело действует на опору с силой \(~\vec P\) , которая в соответствии с третьим законом Ньютона равна по модулю и противоположна по направлению \(~\vec N\) \[~\vec P = -\vec N\] . Сила \(~\vec P\) и есть вес тела.

Рис. 3

Если тело и опора неподвижны или движутся равномерно и прямолинейно, т. е. без ускорения, то, согласно второму закону Ньютона,

\(~\vec N + m \vec g = 0\) .

Так как

\(~\vec N = -\vec P\) , то \(~-\vec P + m \vec g = 0\) .

Следовательно,

\(~\vec P = m \vec g\) .

Значит, если ускорение а = 0, то вес тела равен силе тяжести.

Но это не значит, что вес тела и сила тяжести, приложенная к нему, одно и то же. Сила тяжести приложена к телу, а вес приложен к опоре или подвесу. Природа силы тяжести и веса тоже различна.

Если сила тяжести является результатом взаимодействия тела и Земли (сила тяготения), то вес появляется в результате совсем другого взаимодействия: взаимодействия тела А и опоры В. Опора В и тело А при этом деформируются, что приводит к появлению сил упругости.

Таким образом, вес тела (как и сила реакции опоры) является частным видом силы упругости.

Вес обладает особенностями, существенно отличающими его от силы тяжести.

Во-первых, вес определяется всей совокупностью действующих на тело сил, а не только силой тяжести (так, вес тела в жидкости или воздухе меньше, чем в вакууме, из-за появления выталкивающей (архимедовой) силы). Во-вторых, вес тела, существенно зависит от ускорения, с которым движется опора (подвес).

Вес тела при движении опоры или подвеса с ускорением

Можно ли увеличить или уменьшить вес тела, не изменяя самого тела? Оказывается, да. Пусть тело находится в кабине лифта, движущегося с ускорением \(~\vec a\) (рис. 4 а, б).

  • а
  • б

Рис. 4

Согласно второму закону Ньютона

\(~\vec N + m \vec g = m \vec a\) , (3)

где N – сила реакции опоры (пола лифта), m – масса тела.

По третьему закону Ньютона вес тела \(~\vec P = -\vec N\) . Поэтому, учитывая (3), получим

\(~\vec P = m (\vec g – \vec a)\) .

Направим координатную ось Y системы отсчета, связанной с Землей, вертикально вниз. Тогда проекция веса тела на эту ось будет равна

\(~P_y = m (g_y – a_y)\) .

Так как векторы \(~\vec P\) и \(~\vec g\) сонаправлены с осью координат Y, то Рy = Р и gy = g. Если ускорение \(~\vec a\) направлено вниз (см. рис. 4, а), то ay = а, и равенство принимает следующий вид:

\(~P = m (g – a)\) .Из формулы следует, что лишь при а = 0 вес тела равен силе тяжести. При а ≠ 0 вес тела отличается от силы тяжести.

При движении лифта с ускорением, направленным вниз (например, в начале спуска лифта или в процессе его остановки при движении вверх) и по модулю меньшим ускорения свободного падения, вес тела меньше силы тяжести.

Следовательно, в этом случае вес тела меньше веса того же тела, если оно находится на покоящейся или равномерно движущейся опоре (подвесе). По этой же причине вес тела на экваторе меньше, чем на полюсах Земли, так как вследствие суточного вращения Земли тело на экваторе движется с центростремительным ускорением.

Рассмотрим теперь, что произойдет, если тело движется с ускорением \(~\vec a\), направленным вертикально вверх (см. рис. 4, б). В данном случае получаем

\(~P = m (g + a)\) .

Вес тела в лифте, движущемся с ускорением, направленным вертикально вверх, больше веса покоящегося тела. Увеличение веса тела, вызванное ускоренным движением опоры (или подвеса), называется перегрузкой. Перегрузку можно оценить, найдя отношение веса ускоренно движущегося тела к весу покоящегося тела:

\(~k = \frac{m (g + a)}{m g} = 1 + \frac{a}{g}\) .

Тренированный человек способен кратковременно выдерживать примерно шестикратную перегрузку. Значит, ускорение космического корабля, согласно полученной формуле, не должно превосходить пятикратного значения ускорения свободного падения.

Невесомость

Возьмем в руки пружину с подвешенным к ней грузом, а лучше пружинные весы. По шкале пружинных весов можно отсчитать вес тела. Если рука, держащая весы, покоится относительно Земли, весы покажут, что вес тела по модулю равен силе тяжести mg. Выпустим весы из рук, они вместе с грузом начнут свободно падать.

При этом стрелка весов устанавливается на нуле, показывая, что вес тела стал равным нулю. И это понятно. При свободном падении и весы и груз движутся с одинаковым ускорением, равным g. Нижний конец пружины не увлекается грузом, а сам следует за ним, и пружина не деформируется. Поэтому нет силы упругости, которая действовала бы на груз.

Значит, и груз не деформируется и не действует на пружину. Вес исчез! Груз, как говорят, стал невесомым.

Невесомость объясняется тем, что сила всемирного тяготения, а значит, и сила тяжести сообщают всем телам (в нашем случае – грузу и пружине) одинаковое ускорение g. Поэтому всякое тело, на которое действует только сила тяжести или вообще сила всемирного тяготения, находится в состоянии невесомости.

В таких условиях находятся свободно падающие тела, например тела в космическом корабле. Ведь и космический корабль, и тела в нем тоже находятся в состоянии длительного свободного падения.

Впрочем, в состоянии невесомости, хотя и непродолжительно, находится каждый из вас, спрыгивая со стула на пол или подпрыгивая вверх.

Это же можно доказать и математически. При свободном падении тела \(~\vec a = \vec g\) и \(~P = m (g – g) = 0\) .

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  2. Луцевич А.А., Яковенко С.В. Физика: Учеб. пособие. – Мн.: Выш. шк., 2000. – 495 с.
  3. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Источник: http://www.physbook.ru/index.php/Referat._%D0%A1%D0%B8%D0%BB%D0%B0_%D1%82%D1%8F%D0%B6%D0%B5%D1%81%D1%82%D0%B8

Формула силы тяжести

Сила тяжести определение
Определение

Под воздействием силы притяжения к Земле все тела падают с одинаковыми по отношению к ее поверхности ускорениями. Такое ускорение называют ускорением свободного падения и обозначают: g. Его величина в системе СИ считается равной g=9,80665 м/с2 – это так называемое, стандартное значение.

Вышесказанное обозначает то, что в системе отсчета, которая связывается с Землей, на любое тела обладающее массой m действует сила равная:

которая называется силой тяжести.

Если тело находится в состоянии покоя на поверхности Земли, тогда сила тяжести уравновешивается реакцией подвеса или опоры, которая удерживает тело от падения (вес тела).

Различие между силой тяжести и силой притяжения к Земле

Если быть точным, то следует заметить, что в результате неинерциальности системы отсчета, которая связывается с Землей,сила тяжести отличается от силы притяжения к Земле.

Ускорение, которое соответствует движению по орбите существенно меньше,чем ускорение, которое связывается с суточным вращением Земли. Система отсчета, связанная с Землей, осуществляет вращение поотношению к инерциальным системам с угловой скоростью =const.

Поэтому в случаерассмотрения перемещения тел по отношению к Земле следует учитывать центробежную силу инерции (Fin), равную:

где m – масса тела, r – расстояние от оси Земли. Если тело расположено не высоко от поверхности Земли ( в сравнении с радиусом Земли), то можно считать, что

где RZ – радиус земли, – широта местности.

В таком случае ускорение свободного падения (g) по отношению к Земле будет определено действием сил: силы притяжения к Земле () и силы инерции (). При этом сила тяжести – есть результирующая этих сил:

Так как сила тяжести сообщает телу, обладающему массой m ускорение равное, то соотношение (1) является справедливым.

Разница между силой тяжести и силой притяжения к Земле небольшая. Так как.

Как и всякая сила, сила тяжести – векторная величина. Направление силы, например, совпадает с направлением нити, натянутой грузом,которое называют направлением отвеса. Сила направлена к центру Земли. Значит, нить отвеса направленатакже только на полюсах и экваторе. На других широтах угол отклонения ()от направления к центру Земли составляет величину, равную:

Разница между Fg-P максимальна на экваторе, она составляет 0,3% от величины силы Fg.Так как земной шар является сплюснутым около полюсов, то Fg имеет некоторые вариации по широте. Так она у экватора на0,2% меньше, чем у полюсов. В результате ускорение g изменяется с широтой от 9,780 м/с2 (экватор) до 9,832 м/с2 (полюса).

По отношению к инерциальной системе отсчета (например, гелиоцентрической СО) тело в свободном падении будет перемещаться с ускорением (a)отличающимся от g, равным по модулю:

и совпадающим по направлению с направлением силы .

Единицы измерения силы тяжести

Основной единицей измерения силы тяжести в системе СИ является: [P]=H

В СГС: [P]=дин

Примеры решения задач

Пример

Задание. Определите во сколько раз величина силы тяжести на Земле (P1) больше, чем сила тяжести на Луне (P2).

Решение. Модуль силы тяжести определяется формулой:

Если имеется в виду сила тяжести на Земле, то в качестве ускорения свободного падения используем величину м/с2 . Для вычисления силы тяжести на Луне найдем при помощи справочников ускорение свободного падения наэтой планете, оно равно 1,6 м/с2 .

Таким образом, для ответа на поставленный вопрос следует найти отношение:

Проведем вычисления:

Ответ.

Пример

Задание. Получите выражение, которое связывает широту и угол, который образуют вектор силы тяжести и вектор силы притяжения к Земле.

Решение. Угол, который образуется между направлениями силы притяжения к Земле и направлением силы тяжести можно оценить, если рассмотреть рис.1 и применить теорему синусов. На рис.1 изображены: – центробежная сила инерции, которая возникает за счет вращенияЗемли вокруг оси, – сила тяжести, – сила притяжения тела к Земле. Угол – широта местности на Земле.

По теореме синусов имеем:

где выражение для центробежной силы можно определить как:

Rz – радиус Земли. При этом:

Подставим выражения (2.2) и (2.3) в (2.1), имеем:

где величину можно рассчитать, если учесть,что радиус Земли равен Rz=6400 км. Угловая скорость вращения Земли есть:

Получаем, что:

Ответ.

Читать дальше: Формула ускорения.

Вы поняли, как решать? Нет?

Источник: https://www.webmath.ru/poleznoe/formules_21_9_sila_tjazhesti.php

Сила тяжести: формула, определение

Сила тяжести определение

Абсолютно на все тела во Вселенной действует волшебная сила, каким-то образом притягивающая их к Земле (точнее к ее ядру).

Никуда не сбежать, нигде не укрыться от всеобъемлющего магического тяготения: планеты нашей Солнечной системы притягиваются не только к огромному Солнцу, но и друг к другу, все предметы, молекулы и мельчайшие атомы также взаимно притягиваются.

Исаак Ньютон, известный даже маленьким детям, посвятив жизнь изучению этого явления, установил один из величайших законов — закон всемирного тяготения.

Что такое сила тяжести?

Определение и формула давно и многим известны. Напомним, сила тяжести — это определенная величина, одно из естественных проявлений всемирного тяготения, а именно: сила, с которой всякое тело неизменно притягивается к Земле.

Сила тяжести обозначается латинской буквой F тяж.

Сила тяжести: формула

Как вычислить силу тяжести, направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Сила тяжести (гравитация) всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием “сила тяжести” используется термин “вес тела”. Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.

Гравитация в Солнечной системе

Есть ли на других планетах сила тяжести? Определение и формула относительно других планет сохраняют свою актуальность. С одной лишь разницей в значении “g”:

  • на Луне = 1,62 Н/кг (в шесть раз меньше земного);
  • на Нептуне = 13,5 Н/кг (почти в полтора раза выше, чем на Земле);
  • на Марсе = 3,73 Н/кг (более чем в два с половиной раза меньше, чем на нашей планете);
  • на Сатурне = 10,44 Н/кг;
  • на Меркурии = 3,7 Н/кг;
  • на Венере = 8,8 Н/кг;
  • на Уране = 9,8 Н/кг (практически такое же, как у нас);
  • на Юпитере = 24 Н/кг (почти в два с половиной раза выше).

Источник: https://FB.ru/article/301125/sila-tyajesti-formula-opredelenie

Сила тяжести, формулы

Сила тяжести определение

Определение 1

Сила тяжести считается приложением к центру тяжести тела, определяемому путем подвешивания тела на нити за его различные точки. При этом точка пересечения всех направлений, которые отмечены нитью, и будет считаться центром тяжести тела.

Замечание 1

Сила тяжести $mg$ считается состоящей из гравитационного притяжения планеты, определяемого как $\frac{GMm}{r_2}$ и также центробежной силы инерции $mw2a$.

Силой тяжести в физике считают силу, действующую на любое физическое тело, пребывающее вблизи земной поверхности либо иного астрономического тела. Сила тяжести на поверхности планеты, по определению, будет складываться из гравитационного притяжения планеты, а также центробежной силы инерции, спровоцированной суточным вращением планеты.

Иные силы (например, притяжение Солнца и Луны) по причине их малости не учитываются или изучаются отдельно в формате временных изменений гравитационного поля Земли. Сила тяжести сообщает всем телам, в независимости от их массы, равное ускорение, представляя при этом консервативную силу. Она вычисляется на основании формулы:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

$\vec {P} = m\vec{g}$,

где $\vec{g}$-ускорение, которое сообщается телу силой тяжести, обозначенное как ускорение свободного падения.

На тела, передвигающиеся относительно поверхности Земли, помимо силы тяжести, также оказывает непосредственное воздействие сила Кориолиса, представляющая силу, используемую при изучении движения материальной точки по отношению к вращающейся системе отсчета. Присоединение силы Кориолиса к воздействующим на материальную точку физическим силам позволит учитывать воздействие вращения системы отсчета на подобное движение.

Важные формулы для расчета

Соответственно закону всемирного тяготения, сила гравитационного притяжения, воздействующая на материальную точку с ее массой $m$ на поверхности астрономического сферически симметричного тела с массой $M$, будет определяться соотношением:

$F={G}\frac{Mm}{R2}$, где:

  • $G$—гравитационная постоянная,
  • $R$— радиус тела.

Указанное соотношение оказывается справедливым, если предположить сферически симметричное распределение массы по объему тела. Тогда сила гравитационного притяжения направляется непосредственно к центру тела.

Модуль центробежной силы инерции $Q$, воздействующей на материальную частицу, выражен формулой:

$Q = maw2$, где:

  • $a$— расстояние между частицей и осью вращения астрономического тела, которое рассматривается,
  • $w$—угловая скорость его вращения. При этом центробежная сила инерции становится перпендикулярной оси вращения и направленной в сторону от нее.

В векторном формате выражение для центробежной силы инерции записывается так:

$\vec{Q} = {mw2\vec{R_0}}$, где:

$\vec {R_0}$— вектор, перпендикулярный оси вращения, который проведен от нее к указанной материальной точке, пребывающей вблизи поверхности Земли.

При этом сила тяжести $\vec {P}$ будет равнозначна сумме $\vec {F}$ и $\vec {Q}$:

$\vec{P} = \vec{F} = \vec{Q}$

Закон притяжения

Без присутствия силы тяжести стало бы невозможным происхождение многих, сейчас кажущихся нам естественными, вещей: так, не было бы схождение с гор лавин, течения рек, дождей.

Атмосфера Земли может сохраняться исключительно благодаря воздействию силы тяжести.

Планеты с меньшей массой, например, Луна или Меркурий, растеряли всю свою атмосферу довольно стремительными темпами и стали беззащитными перед потоками агрессивного космического излучения.

Атмосфера Земли сыграла решающее значение при процессе формирования жизни на Земле, ее. Помимо силы тяжести, на Земле воздействует также сила притяжения Луны.

За счет ее близкого соседства (в космических масштабах), на Земле возможно существование отливов и приливов, а многие биологические ритмы являются совпадающими с лунным календарем.

Силу тяжести, таким образом, нужно рассматривать в формате полезного и важного закона природы.

Замечание 2

Закон притяжения считается универсальным и возможен к применению в отношении любых двух тел, обладающих определенной массой.

В ситуации, если масса одного взаимодействующего тела оказывается намного больше массы второго, говорится о частном случае гравитационной силы, для которого существует специальный термин, такой как «сила тяжести». Он применим к задачам, ориентированным на определение силы притяжения на Земле или иных небесных телах. При подставлении значения силы тяжести в формулу второго закона Ньютона, получаем:

$F = ma$

Здесь $а$ – ускорение силы тяжести, принуждающее тела стремиться друг к другу. В задачах, связанных с задействованием ускорения свободного падения, такое ускорение обозначают буквой $g$. С помощью собственного интегрального исчисления, Ньютону математически удалось доказать постоянную сосредоточенность силы тяжести в центре большего тела.

Источник: https://spravochnick.ru/fizika/ponyatie_sily_v_fizike/sila_tyazhesti_formuly/

Физика. Понятия и определения

Сила тяжести определение
Международные перевозки грузов Чулан Физика — вспомнить всё.

Что такое сила?

Если тело ускоряется то на него что-то действует. А как найти это «что-то»? Например, что за силы действуют на тело вблизи поверхности земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус земли ${\large R}$, почти независящая от высоты; она равна

${\large F = \dfrac {G  \cdot m \cdot M}{R2} = m \cdot g }$

где

${\large g = \dfrac {G  \cdot M}{R2} }$

так называемое ускорение силы тяжести. В горизонтальном направлении тело будет двигаться с постоянной скоростью, однако движение в вертикальном направлении по второму закону Ньютона:

${\large m \cdot g = m \cdot \left ( \dfrac {d2 \cdot x}{d \cdot t2} \right ) }$

после сокращения ${\large m}$ получаем, что ускорение в направлении ${\large x}$ постоянно и равно ${\large g}$. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями

${\large v_x = v_0 + g \cdot t}$

${\large x = x_0 + x_0 \cdot t  + \dfrac {1}{2} \cdot g \cdot t2}$

В чем сила измеряется?

Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются. Это крайне неудобно.

Ньютон newton (Н) — производная единица измерения силы в Международной системе единиц (СИ).
Исходя из второго закона Ньютона, единица ньютон определяется как сила, изменяющая за одну секунду скорость тела массой один килограмм на 1 метр в секунду в направлении действия силы.

Таким образом, 1 Н = 1 кг·м/с².   

Килограмм-сила (кгс или кГ) — гравитационная метрическая единица силы, равная силе, которая действует на тело массой один килограмм в гравитационном поле земли. Поэтому по определению килограмм-сила равна 9,80665 Н. Килограмм-сила удобна тем, что её величина равна весу тела массой в 1 кг. 1 кгс = 9,80665 ньютонов (примерно ≈ 10 Н)

1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

1 Н = 1 кг x 1м/с2.

Закон тяготения

Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорционально квадрату расстояния между ними.

${\large F = G  \cdot \dfrac {m \cdot M}{R2}}$

Добавить можно, что любое тело реагирует на приложенную к нему силу ускорением в направлении этой силы, по величине обратно пропорциональным массе тела.

 ${\large G}$ — гравитационная постоянная

 ${\large M}$ — масса земли

 ${\large R}$ — радиус земли

${\large G = 6,67 \cdot {10{-11}} \left ( \dfrac {m3}{kg \cdot {sec}2} \right ) }$

${\large M = 5,97 \cdot {10{24}} \left ( kg \right ) }$

${\large R = 6,37 \cdot {10{6}} \left ( m \right ) }$

В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, согласно которому сила гравитационного притяжения между двумя телами массы ${\large m_1}$ и ${\large m_2}$, разделённых расстоянием ${\large R}$ есть

${\large F = -G  \cdot \dfrac {m_1 \cdot m_2}{R2}}$Здесь ${\large G}$ — гравитационная постоянная, равная ${\large 6,673 \cdot {10{-11}} m3 / \left ( kg \cdot {sec}2 \right ) }$. Знак минус означает, что сила, действующая на пробное тело, всегда направлена по радиус-вектору от пробного тела к источнику гравитационного поля, т.е.

гравитационное взаимодействие приводит всегда к притяжению тел.Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру.

Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии, что при изучении движения тел в поле тяжести часто существенно упрощает решение.

В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим.

Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени.

Тяжелее — Легче

Вес тела ${\large P}$ выражается произведением его массы ${\large m}$ на ускорение силы тяжести ${\large g}$.

${\large P = m \cdot g}$

Когда на земле тело становится легче (слабее давит на весы), это происходит от уменьшения массы. На луне все не так, уменьшение веса вызвано изменением другого множителя — ${\large g}$, так как ускорение силы тяжести на поверхности луны в шесть раз меньше чем на земле.

масса земли = ${\large 5,9736 \cdot {10{24}}\ kg }$

масса луны = ${\large 7,3477 \cdot {10{22}}\ kg }$ 

ускорение свободного падения на Земле = ${\large 9,81\ m / c2 }$ 

ускорение свободного падения на Луне = ${\large 1,62 \ m / c2 }$ 

В результате произведение ${\large m \cdot g }$, а следовательно и вес уменьшаются в 6 раз.

Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче». На луне тела становятся не легче, а лишь менее стремительно падают они «менее падучи»))).

Векторные и скалярные величины

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин.

 Рисунок 1.

На рис. 1 изображены различные варианты расположения вектора ${ \large \overrightarrow{F}}$ и его проекции ${ \large F_x}$ и ${ \large F_y}$ на оси ${ \large X}$ и ${ \large Y}$ соответственно:

  • A.    величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми и положительными
  • B.    величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми, при этом ${\large F_y}$ — положительная величина, а ${\large F_x}$ — отрицательная, т.к. вектор ${\large \overrightarrow{F}}$ направлен в сторону, противоположную направлению оси ${\large X}$ 
  • C.    ${\large F_y}$ — положительная  ненулевая величина, ${\large F_x}$ равна нулю, т.к. вектор ${\large \overrightarrow{F}}$ направлен перпендикулярно оси ${\large X}$

Момент силы

Моментом силы называют векторное произведение радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Т.е. согласно классическому определению момент силы — величина векторная.

В рамках нашей задачи, это определение можно упростить до следующего: моментом силы ${\large \overrightarrow{F}}$, приложенной к точке с координатой ${\large x_F}$, относительно оси, расположенной в точке ${\large x_0}$ называется скалярная величина, равная произведению модуля силы ${\large \overrightarrow{F}}$, на плечо силы — ${\large \left | x_F – x_0 \right |}$.

А знак этой скалярной величины зависит от направления силы: если она вращает объект по часовой стрелке, то знак плюс, если против — то минус.

Важно понимать, что ось мы можем выбирать произвольным образом — если тело не вращается, то сумма моментов сил относительно любой оси равна нулю. Второе важное замечание — если сила приложена к точке, через которую проходит ось, то момент этой силы относительно этой оси равен нулю (поскольку плечо силы будет равно нулю). 

Проиллюстрируем вышесказанное примером, на рис.2. Предположим, что система, изображенная на рис. 2, находится в равновесии. Рассмотрим опору, на которой стоят грузы.

На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А, В и С соответственно.

На рисунке также присутствуют силы ${\large \overrightarrow{N_{1}{gr}},\ \overrightarrow{N_2{gr}}}$. Эти силы приложены к грузам, и согласно 3-му закону Ньютона

${\large \overrightarrow{N_{1}} = – \overrightarrow{N_{1}{gr}}}$

${\large \overrightarrow{N_{2}} = – \overrightarrow{N_{2}{gr}}}$

Теперь рассмотрим условие равенства моментов сил, действующих на опору, относительно оси, проходящей через точку А (и, как мы договаривались ранее, перпендикулярную плоскости рисунка):

${\large N \cdot l_1 – N_2 \cdot \left ( l_1 +l_2 \right ) = 0}$

Обратите внимание, что в уравнение не вошёл момент силы ${\large \overrightarrow{N_1}}$, поскольку плечо этой силы относительно рассматриваемой оси равно ${\large 0}$. Если же мы по каким-либо причинам хотим выбрать ось, проходящую через точку С, то условие равенства моментов сил будет выглядеть так:

${\large N_1 \cdot l_1 – N_2 \cdot l_2  = 0}$

Можно показать, что с математической точки зрения два последних уравнения эквивалентны.

Центр тяжести

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю.

Центр масс

Точка центра масс замечательна тем , что если на частицы образующие тело (неважно будет ли оно твердым или жидким, скоплением звезд или чем то другим) действует великое множество сил (имеются ввиду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому ускорению этой точки, как будто в ней вся масса тела ${\large m}$.

Положение центра масс определяется уравнением:

${\large R_{c.m.} = \frac{\sum m_i\, r_i}{\sum m_i}}$

Это векторное уравнение, т.е. фактически три уравнения — по одному для каждого из трех направлений. Но рассмотрим только ${\large x}$ направление.  Что означает следующее равенство?

${\large X_{c.m.} = \frac{\sum m_i\, x_i}{\sum m_i}}$

Предположим тело разделено на маленькие кусочки с одинаковой массой ${\large m}$, причем полная масса тела равна будет равна числу таких кусочков ${\large N}$, умноженному на массу одного кусочка, например 1 грамм.

Тогда это уравнение означает, что нужно взять координаты ${\large x}$ всех кусочков, сложить их и результат разделить на число кусочков. Иными словами, если массы кусочков равны то ${\large X_{c.m.

}}$ будет просто средним арифметическим ${\large x}$ координат всех кусочков.

центр масс сложного тела

лежит на линии, соединяющей центры масс

двух составляющих его частей

Масса и плотность

Масса — фундаментальная физическая величина. Масса характеризует сразу несколько свойств тела и сама по себе обладает рядом важных свойств.

  • Масса служит мерой содержащегося в теле вещества.
  • Масса является мерой инертности тела. Инертностью называется свойство тела сохранять свою скорость неизменной (в инерциальной системе отсчёта), когда внешние воздействия отсутствуют или компенсируют друг друга. При наличии внешних воздействий инертность тела проявляется в том, что его скорость меняется не мгновенно, а постепенно, и тем медленнее, чем больше инертность (т.е. масса) тела. Например, если бильярдный шар и автобус движутся с одинаковой скоростью и тормозятся одинаковым усилием, то для остановки шара требуется гораздо меньше времени, чем для остановки автобуса.
  • Массы тел являются причиной их гравитационного притяжения друг к другу (см. раздел «Сила тяготения»).
  • Масса тела равна сумме масс его частей. Это так называемая аддитивность массы. Аддитивность позволяет использовать для измерения массы эталон – 1 кг.
  • Масса изолированной системы тел не меняется со временем (закон сохранения массы).
  • Масса тела не зависит от скорости его движения. Масса не меняется при переходе от одной системы отсчёта к другой.
  • Плотностью однородного тела называется отношение массы тела к его объёму:

 ${\large p = \dfrac {m}{V} }$

Плотность не зависит от геометрических свойств тела (формы, объёма) и является характеристикой вещества тела. Плотности различных веществ представлены в справочных таблицах. Желательно помнить плотность воды: 1000 кг/м3.

Второй и третий законы Ньютона

Взаимодействие тел можно описывать с помощью понятия силы. Сила – это векторная величина, являющаяся мерой воздействия одного тела на другое.
Будучи вектором, сила характеризуется модулем (абсолютной величиной) и направлением в пространстве.

Кроме того, важна точка приложения силы: одна и та же по модулю и направлению сила, приложенная в разных точках тела, может оказывать различное воздействие. Так, если взяться за обод велосипедного колеса и потянуть по касательной к ободу, то колесо начнёт вращаться.

Если же тянуть вдоль радиуса, никакого вращения не будет.

Второй закон Ньютона

Произведение массы тела на вектор ускорения есть равнодействующая всех сил, приложенных к телу:

${\large m \cdot \overrightarrow{a} = \overrightarrow{F} }$

Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

  1. ${\large m \cdot a = F}$, где ${\large a}$ — модуль ускорения, ${\large F}$ — модуль равнодействующей силы.
  2. Вектор ускорения имеет одинаковое направление с вектором равнодействующей силы, так как масса тела положительна.

Третий закон Ньютона

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

Принцип суперпозиции

Опыт показывает, что если на данное тело действуют несколько других тел, то соответствующие силы складываются как векторы. Более точно, справедлив принцип суперпозиции.
Принцип суперпозиции сил.

Пусть на тело действуют силы ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$  Если заменить их одной силой ${\large \overrightarrow{F} =  \overrightarrow{F_1} + \overrightarrow{F_2} \ldots + \overrightarrow{F_n}}$, то результат воздействия не изменится.

Сила ${\large \overrightarrow{F}}$ называется равнодействующей сил ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$ или результирующей силой. 

Источник: https://www.vdnk.ru/site/ru/transport-articles/Physics-remember

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.