Простое число определение

Татьяна Мельничук | Простые числа

Простое число определение

Простое число — это натуральное (целое положительное) число , которое делится без остатка только на два натуральных числа: на и на само себя. Иными словами, простое число имеет ровно два натуральных делителя: и само число .

В силу определения, множество всех делителей простого числа является двухэлементным, т.е. представляет собой множество .

Множество всех простых чисел обозначают символом . Таким образом, в силу определения множества простых чисел, мы можем записать: .

Последовательность простых чисел выглядит так:

Основная теорема арифметики

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа являются элементарными «строительными блоками» множества натуральных чисел.

Разложение натурального числа в произведение простых чисел называют каноническим:

где — простое число, и . Например, каноническое разложение натурального числа выглядит так: .

Представление натурального числа в виде произведения простых также называют факторизацией числа.

Свойства простых чисел

  • Любое натуральное число либо делится на простое число , либо взаимно просто с ним (то есть НОД).
  • Произведение натуральных чисел делится на простое число тогда и только тогда, когда хотя бы одно из них делится на это простое число.
  • Простых чисел бесконечно много (не существует самого большого простого числа).
  • Если натуральное число не делится ни на одно простое число, квадрат которого не превосходит это натуральное число, то оно само является простым.
  • Если — простое число, а — натуральное, то делится на (малая теорема Ферма).
  • Если — натуральное число, то существует такое простое число , что (постулат Бертрана).
  • Любое простое число представимо в виде .
  • Если — простое число, то кратно .

Решето Эратосфена

Эратосфен Киренский

Одним из наиболее известных алгоритмов поиска и распознавания простых чисел является решето Эратосфена. Так этот алгоритм был назван в честь греческого математика Эратосфена Киренского, которого считают автором алгоритма.

Для нахождения всех простых чисел, меньших заданного числа , следуя методу Эратосфена, нужно выполнить следующие шаги:

Шаг 1. Выписать подряд все натуральные числа от двух до , т.е. .
Шаг 2. Присвоить переменной значение , то есть значение равное наименьшему простому числу.
Шаг 3.

Вычеркнуть в списке все числа от до кратные , то есть числа: .
Шаг 4. Найти первое незачёркнутое число в списке, большее , и присвоить переменной значение этого числа.
Шаг 5.

Повторить шаги 3 и 4 до достижения числа .

Процесс применения алгоритма будет выглядеть следующим образом:

Все оставшиеся незачёркнутые числа в списке по завершении процесса применения алгоритма будут представлять собой множество простых чисел от до .

Гипотеза Гольдбаха

Обложка книги «Дядюшка Петрос и гипотеза Гольдбаха»

Несмотря на то, что простые числа изучаются математиками достаточно давно, на сегодняшний день остаются нерешёнными многие связанные с ними проблемы. Одной из наиболее известных нерешённых проблем является гипотеза Гольдбаха, которая формулируется следующим образом:

  • Верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел (бинарная гипотеза Гольдбаха)?
  • Верно ли, что каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел (тернарная гипотеза Гольдбаха)?

Следует сказать, что тернарная гипотеза Гольдбаха является частным случаем бинарной гипотезы Гольдбаха, или, как говорят математики, тернарная гипотеза Гольдбаха является более слабой, чем бинарная гипотеза Гольдбаха.

Гипотеза Гольдбаха получила широкую известность за пределами математического сообщества в 2000-м году благодаря рекламному маркетинговому трюку издательских компаний Bloomsbury USA (США) и Faber and Faber (Великобритания).

Указанные издательства, выпустив книгу «Uncle Petros and Goldbach’s Conjecture» («Дядюшка Петрос и гипотеза Гольдбаха»), пообещали выплатить в течение 2-х лет с момента издания книги приз 1 миллион долларов США тому, кто докажет гипотезу Гольдбаха. Иногда упомянутый приз от издательств путают с премиями за решение «Задач тысячелетия» (Millennium Prize Problems).

Не стоит заблужаться, гипотеза Гольдбаха не отнесена «Институтом Клэя» к «задачам тысячелетия», хотя и является при этом тесно связанной с гипотезой Римана — одной из «задач тысячелетия».

Книга «Простые числа. Долгая дорога к бесконечности»

Обложка книги «Мир математики. Простые числа. Долгая дорога к бесконечности»

Дополнительно рекомендую прочесть увлекательную научно-популярную книгу «Мир математики. Простые числа. Долгая дорога к бесконечности», в аннотации к которой сказано: «Поиск простых чисел — одна из самых парадоксальных проблем математики.

Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности.

Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел».

Дополнительно процитирую начало второй главы этой книги: «Простые числа представляют из себя одну из важных тем, которые возвращают нас к самым истокам математики, а затем по пути возрастающей сложности приводят на передний край современной науки.

Таким образом, было бы очень полезно проследить увлекательную и сложную историю теории простых чисел: как именно она развивалась, как именно были собраны факты и истины, которые в настоящее время считаются общепринятыми.

В этой главе мы увидим, как целые поколения математиков тщательно изучали натуральные числа в поисках правила, предсказывающего появление простых чисел, — правила, которое в процессе поиска становилось все более и более ускользающим.

Мы также подробно рассмотрим исторический контекст: в каких условиях математики работали и в какой степени в их работе применялись мистические и полурелигиозные практики, которые совсем не похожи на научные методы, используемые в наше время. Тем не менее медленно и с трудом, но была подготовлена почва для новых воззрений, вдохновлявших Ферма и Эйлера в XVII и XVIII в.в.»

Вернуться назад…

МЕТКИ >гипотеза Гольдбаха, математика, множества, простые числа, решето Эратосфена

Источник: http://tmel.ru/prostye-chisla/

Простые и составные числа, свойства простых чисел

Простое число определение

Определение 1

Натуральное число $p$ называется простым числом, если у него только $2$ делителя: $1$ и оно само.

Делителем натурального числа $a$ называют натуральное число, на которое исходное число $a$ делится без остатка.

Пример 1

Найти делители числа $6$.

Решение: Нам надо найти все числа, на которые заданное число $6$ делится без остатка. Это будут числа: $1,2,3,6.$ Значит делителем числа $6$ будут числа $1,2,3,6.$

Ответ: $1,2,3,6$.

Значит, для того, чтобы найти делители числа надо найти все натуральные числа, на которые данное делится без остатка. Нетрудно заметить, что число $1$ будет являться делителем любого натурального числа.

Пример 2

На сколько равных кучек можно разделить $15$ орехов?

Решение. Нам необходимо разделить поровну нацело $15$ орехов, т.е. найти делители числа $15$.Найдем числа, на которые число $15$ делится без остатка.

Это числа:$1,3,5,15$. Значит $15$ орехов можно разделить на $1,3,5,15$ равных кучек.

Ответ: на $1,3,5,15$ кучек.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Определение 2

Составным называют число, у которого кроме единицы и самого себя есть другие делители.

Примером простого числа может являться число $13$, примером составного число $14$.

Замечание 1

Число $1$ имеет только один делитель-само это число, поэтому его не относят ни к простым, ни к составным.

Определение 3

Взаимно простыми числами называются те, у которых НОД равен $1$.Значит для выяснения будут ли являться числа взаимно простыми необходимо найти их НОД.

Наибольший общий делитель

Определение 4

Наибольшее натуральное число, на которое делятся без остатка числа $a$ и $b$, называется наибольшим общим делителем и часто обозначается НОД.

Чтобы найти наибольший общий делитель двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выбрать числа, которые входят в разложение этих чисел
  3. Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

Пример 3

Найти НОД чисел $63$ и $81$.

Решение: Найдём НОД чисел $63$ и $81$

  1. Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

  2. Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

  3. Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Свойство составных и простых чисел

Теорема 1

Любое составное число можно разложить на $2$ множителя, каждый из которых больше единицы. Простое число так представить нельзя.

Действительно, простое число $17$ можно представить в виде произведения множителей только так: $17=1\cdot 17$, а составное число $18=1\cdot 2\cdot 9$. У составного числа $18$ три множителя, два из которых больше единицы.

Замечание 2

Всякое составное число можно разложить на простые множители и представить в виде произведения множителей, которые являются простыми числами.

Простое число

Простое число определение

TR | UK | KK | BE | EN |
простое число, простое число это
Просто́е число́ — это натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя. Другими словами, число простое, если оно больше и делится без остатка только на и на .

Натуральные числа, большие единицы, не являющиеся простыми, называются составными. Таким образом, все натуральные числа разбиваются на три класса: единицу (имеющую один делитель), простые числа (имеющие два делителя) и составные числа (имеющие больше двух делителей). Изучением свойств простых чисел занимается теория чисел.

В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …

  • 1 Разложение натуральных чисел в произведение простых
  • 2 Алгоритмы поиска и распознавания простых чисел
  • 3 Бесконечность множества простых чисел
  • 4 Наибольшее известное простое
  • 5 Простые числа специального вида
  • 6 Некоторые свойства
  • 7 Открытые вопросы
  • 8 Приложения
  • 9 Вариации и обобщения
  • 10 См. также
  • 11 Примечания
  • 12 Литература
  • 13 Ссылки

Разложение натуральных чисел в произведение простых

Основная статья: Факторизация целых чисел

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа.

На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует.

На предполагаемой большой вычислительной сложности задачи факторизации базируется криптосистема RSA и некоторые другие. Факторизация с полиномиальной сложностью теоретически возможна на квантовом компьютере с помощью алгоритма Шора.

Алгоритмы поиска и распознавания простых чисел

Основная статья: Тест простоты Эратосфен Киренский

Простые способы нахождения начального списка простых чисел вплоть до некоторого значения дают Решето Эратосфена, решето Сундарама и решето Аткина.

Однако, на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты.

Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии.

В 2002 году было доказано, что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный тест Агравала — Каяла — Саксены имеет довольно большую вычислительную сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты (см. ниже).

Бесконечность множества простых чисел

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор. Противоречие.

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма величин, обратных к первым n простым числам, неограниченно растёт с ростом n.

Теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое , растёт как .

Наибольшее известное простое

Основная статья: Наибольшее известное простое число

Издавна ведутся записи, отмечающие наибольшие известные на то время простые числа. Один из рекордов поставил в своё время Эйлер, найдя простое число .

Наибольшим известным простым числом по состоянию на август 2014 года является . Оно содержит 17 425 170 десятичных цифр и является простым числом Мерсенна (M57885161). Его нашли 25 января 2013 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна GIMPS.

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США. Ранее EFF уже присуждала призы за нахождение простых чисел из 1 000 000 и 10 000 000 десятичных цифр.

Простые числа специального вида

Существует ряд чисел, простота которых может быть установлена эффективно с использованием специализированных алгоритмов.

  • Числа Мерсенна — числа вида , где p — простое число. Как уже было отмечено выше, эффективным тестом простоты является тест Люка-Лемера.
  • Числа Ферма — числа вида , где n — неотрицательное целое число. Эффективным тестом простоты является тест Пепина. По состоянию на ноябрь 2011 года известно только 5 простых чисел Ферма (для n = 0, 1, 2, 3, 4), и высказана гипотеза, что других простых чисел Ферма нет.
  • Числа Вудала — числа вида . Эффективным тестом простоты является тест Люка — Лемера — Ризеля (англ.).

С использованием теста Бриллхарта — Лемера — Селфриджа (англ.) может быть проверена простота следующих чисел:

  • Числа Каллена — числа вида .
  • Числа Прота — числа вида , причем k нечётно и . Числа Каллена являются частным случаем чисел Прота при k = n. Числа Ферма являются частным случаем чисел Прота при k = 1 и .
  • Числа Миллcа — числа вида где  — константа Миллса.

Для поиска простых чисел обозначенных типов в настоящее время используются проекты распределенных вычислений GIMPS, PrimeGrid, [email protected], Seventeen or Bust, Riesel Sieve, [email protected]

Некоторые свойства

  • Если  — простое, и делит , то делит или . Доказательство этого факта было дано Евклидом и известно как лемма Евклида. Оно используется в доказательстве основной теоремы арифметики.
  • Кольцо вычетов является полем тогда и только тогда, когда  — простое.
  • Характеристика каждого поля — это ноль или простое число.
  • Если  — простое, а  — натуральное, то делится на (малая теорема Ферма).
  • Если  — конечная группа, порядок которой делится на , то содержит элемент порядка (теорема Коши).
  • Если  — конечная группа, и  — максимальная степень , которая делит , то имеет подгруппу порядка , называемую силовской подгруппой, более того, количество силовских подгрупп равно для некоторого целого (теоремы Силова).
  • Натуральное является простым тогда и только тогда, когда делится на (теорема Вильсона).
  • Если  — натуральное, то существует простое , такое, что (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида , где  — целые взаимно простые числа, содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде или , где  — некоторое натуральное число. Отсюда, если разность между несколькими последовательными простыми числами (при k>1) одинакова, то она обязательно кратна 6 — например: 251-257-263-269; 199-211-223; 20183-20201-20219.
  • Если  — простое, то кратно 24 (справедливо также для всех нечётных чисел, не делящихся на 3).
  • Теорема Грина-Тао. Существуют сколь угодно длинные конечные арифметические прогрессии, состоящие из простых чисел.
  • Никакое простое число не может иметь вид , где n>2, k>1. Иначе говоря, число, следующее за простым, не может быть квадратом или более высокой степенью с основанием, бо́льшим 2. Из этого следует также, что если простое число имеет вид , то k — простое (см. числа Мерсенна).
  • Никакое простое число не может иметь вид , где n>1, k>0. Иначе говоря, число, предшествующее простому, не может быть кубом или более высокой нечётной степенью с основанием, бо́льшим 1.
  • Существуют многочлены, множество положительных значений которых при неотрицательных значениях переменных совпадает с множеством простых чисел. Одним из примеров является многочлен

содержащий 26 переменных и имеющий степень 25. Наименьшая степень для известных многочленов такого типа — 5 при 42 переменных; наименьшее число переменных — 10 при степени около 1,6·1045. Этот результат является частным случаем доказанной Юрием Матиясевичем диофантовости любого перечислимого множества.

Открытые вопросы

Основная статья: Открытые проблемы в теории чисел Распределение простых чисел pn = f (Δsn); Δsn = pn+1² — pn². Δpn = pn+1 — pn; Δpn = 2, 4, 6, … .

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе:

  1. Проблема Гольдбаха (первая проблема Ландау): верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел?
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2? (в 2013 году математик Чжан Итан (Yitang Zhang) из университета Нью-Гэмпшира доказал, что существует бесконечно большое количество простых чисел, расстояние между которыми не превышает 70 миллионов. Позже, Джеймс Мэйнард (James Maynard) улучшил результат до 600. В 2014 году проект Polymath под руководством Теренса Тао несколько улучшили последний метод, получив оценку в 246.)
  3. Гипотеза Лежандра (третья проблема Ландау): верно ли, что для всякого натурального числа n между и всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида , где n — натуральное число?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения

Большие простые числа (порядка ) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ «Вихрь Мерсенна»).

Вариации и обобщения

  • В теории колец, разделе общей алгебры, определено понятие простого элемента и простого идеала.
  • В теории узлов определено понятие простого узла как нетривиального узла, который не может быть представлен в виде связной суммы нетривиальных узлов.

См. также

  • Незаконное простое число
  • Полупростое число
  • Примориал
  • Простые числа, отличающиеся на шесть
  • Случайное простое число
  • Составное число
  • Список простых чисел

Примечания

  1. Простое число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1977. — Т. 4.
  2. последовательность A000040 в OEIS, см. также список простых чисел
  3. Рекорды простых чисел по годам
  4. EFF Cooperative Computing Awards (англ.

    )

  5. последовательность A001348 в OEIS
  6. Простые числа Мерсенна образуют последовательность A000668 в OEIS
  7. последовательность A000215 в OEIS
  8. последовательность A003261 в OEIS
  9. Простые числа Вудала образуют последовательность A050918 в OEIS
  10. последовательность A002064 в OEIS
  11. Простые числа Каллена образуют последовательность A050920 в OEIS
  12. последовательность A080075 в OEIS
  13. Простые числа Прота образуют последовательность A080076 в OEIS
  14. Доказательство. Нечётное число p, не кратное 3, равно 1 или 2 по модулю 3 и равно 1, 3, 5 или 7 по модулю 8. При возведении в квадрат это даёт 1 по модулю 3 и 1 по модулю 8. Вычитая 1, получаем 0 по модулю 3 и 0 по модулю 8. Следовательно, кратно 3 и кратно 8; следовательно, оно кратно 24.
  15. Weisstein, Eric W. Теорема Грина-Тао (англ.) на сайте Wolfram MathWorld.
  16. Эти 2 свойства непосредственно следуют из формул разложения суммы и разности степеней.
  17. Jones J. P., Sato D., Wada H., Wiens D (1976). «Diophantine representation of the set of prime numbers». Amer. Math. Mon. 83 (6): 449–464.
  18. Yuri Matiyasevich, Diophantine Equations in the XX Century
  19. Matijasevic’s polynomial. The Prime Glossary.
  20. Weisstein, Eric W. Landau's Problems (англ.) на сайте Wolfram MathWorld.
  21. Неизвестный математик совершил прорыв в теории простых чисел-близнецов
  22. Bounded Gaps Between Primes

Литература

  • Гальперин Г. «Просто о простых числах» // Квант. — № 4. — С. 9-14,38.
  • Нестеренко Ю. В. Алгоритмические проблемы теории чисел // Введение в криптографию / Под редакцией В. В. Ященко. — Питер, 2001. — 288 с. — ISBN 5-318-00443-1.

Источник: https://www.turkaramamotoru.com/ru/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5-%D1%87%D0%B8%D1%81%D0%BB%D0%BE-39237.html

Алгоритмы нахождения простых чисел

Простое число определение

Простые числа – это натуральные числа, большие единицы, которые имеют только два делителя: единицу и само это число.

Примеры простых чисел: 2 , 3, 5, 7, 11, 13…

(Единица не является простым числом!)

Существует множество задач, связанных с простыми числами, и хотя формулируются они достаточно просто, решить их бывает очень трудно. Некоторые свойства простых чисел еще не открыты. Это побудило немецкого математика Германа Вейля (Wayl, 1885-1955) так охарактеризовать простые числа: «Простые числа – это такие существа, которые всегда склонны прятаться от исследователя».

Во все времена люди хотели найти как можно большее простое число. Пока люди считали только при помощи карандаша и бумаги, им нечасто удавалось обнаружить новые простые числа. До 1952 г. самое большое известное простое число состояло из 39 цифр. Теперь поиском все больших простых чисел занимаются компьютеры. Это может представлять интерес для любителей рекордов.

Не будем гнаться за рекордами, а рассмотрим несколько алгоритмов нахождения простых чисел.

Задача 1. Определение простого числа.

Составить программу, которая будет проверять, является ли введенное число простым.

Самый простой путь решения этой задачи – проверить, имеет ли данное число n (n >= 2) делители в интервале [2; n-1]. Если делители есть, число n – составное, если – нет, то – простое.

При реализации алгоритма разумно делать проверку на четность введенного числа, поскольку все четные числа делятся на 2 и являются составными числами, то, очевидно, что нет необходимости искать делители для этих чисел.

Логическая переменная flag в программе выступает в роли “флаговой” переменной и повышает наглядность программы, так, если flag = true, то n –простое число; если у числа n есть делители, то “флаг выключаем” с помощью оператора присваивания flag:= false, таким образом, если flag = false, то n – составное число.

var n,i: longint; flag: boolean; begin writeln('vvod n'); read(n); if n = 2 then flag := true      else if not odd (n) then flag := false          else  begin                flag := true;                for i := 2 to n-1 do                if n mod i = 0 then flag := false                end; if flag then writeln('Yes') else writeln('No'); readln; end.

Задача 2. Нахождение простых чисел в заданном интервале.

Составить программу, которая напечатает все простые числа в заданном интервале [2, m], для m>3 и подсчитает их количество.

Для реализации данного алгоритма необходимо проверить каждое число, находящееся в данном интервале, – простое оно или нет. Однако для этого машине пришлось бы потратить много времени. Поэтому подумаем, каким образом можно оптимизировать алгоритм, описанный в задаче 1, применительно к задаче 2?

Будем использовать следующие приемы оптимизации алгоритма:

  1. рассматривать только нечетные числа;
  2. использовать свойство: наименьшее число, на которое делится натуральное число n, не превышает целой части квадратного корня из числа n;
  3. прерывать работу цикла, реализующего поиск делителей числа, при нахождении первого же делителя с помощью процедуры Break, которая реализует немедленный выход из цикла и передает управление оператору, стоящему сразу за оператором цикла.

Как правило, учащиеся сами догадываются о приемах №1 и №3, но не всегда знают, как реализовать в программе досрочное завершение цикла, прием же №2 для них не очевиден, поэтому, возможно, учителю следует остановиться на нем более подробно или же привести полное доказательство этого утверждения.

Счетчик чисел будет находиться в переменной k. Когда очередное простое число найдено, он увеличивается на 1. Простые числа выводятся по 10 в строке, как только значение счетчика становится кратным 10, курсор переводится на новую строку.

var m,n,i,k: longint; flag: boolean; begin writeln('vvod m>3'); readln(m); write('      2      3'); n:=3; k := 2;  n := n+2; while n = 3 then begin                  write(f,'3');                  k:=k+1                end;      close(f);      i:=5;                {В i находится текущее нечетное число}      while i i) then break;            if (i mod q=0) then goto n1           end;        close(f);             {дозапись в ‘хвост’ файла простых чисел}        append(f);            k:=k+1;            Write (f,i:7);            if k mod 10 = 0 then writeln(f);            close(f);        {следующее нечетное число I

Источник: https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/592067/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.