Преобразование значения сопротивления в температуру

Содержание

Пересчет сопротивления к требуемой температуре

Преобразование значения сопротивления в температуру

Так как мой блог читают “дети”, то вначале пару слов про сопротивление изоляции и сопротивление постоянному току. Вроде и похожие вещи, но на деле абсолютно разные. В чем же их схожесть и различия.

Обмотка электрической машины или кабель имеет токопроводящую жилу покрытую изоляцией, которая защищает окружающих от тока и сам кабель или жилу от повреждения вследствие короткого замыкания.

При измерении Rx (сопротивления изоляции) мы подаем постоянное напряжение мегаомметром на голую жилу и определяем отношение поданного напряжения к величине тока утечки. Чем хуже изоляция, тем значение Rx ближе к нулю и тем больший ток утечки. Тут вроде все логично.

Ток утечки убегает через изоляцию и чем она хуже, тем ток больше.

Если Вам все понятно, тогда вопрос: куда убегает ток при измерении сопротивления изоляции голой шины? Значение сопротивления изоляции обычно должно быть больше нормируемой величины, что будет говорить о том, что изоляция в порядке и не устарела, или другими словами – оборудование пригодно к работе.

Сопротивление постоянному току измеряется либо по схеме амперметр-вольтметр, либо с помощью специального прибора – микроомметра. Сопротивление измеряется как отношение разности напряжения на концах измеряемого участка к току на этом участке. Закон Ома, в общем.

То есть чем ближе у нас величина сопротивления к нулю, тем лучше наш проводник проводит электрический ток. А если провод оборван, то значение сопротивления равно бесконечности. Значение сопротивления постоянному току обычно сравнивают с заводскими значениями и между собой.

Если с течением времени значение резко изменяется в какую-либо сторону, стоит задуматься о возможном дефекте.

Значения сопротивления изоляции и сопротивления постоянному току для разного оборудования нормируется и описывается в технической документации и нормах испытания электрооборудования. Для каждого оборудования это своя величина и это отдельная тема, которая подробнее раскрывается в других материалах на сайте.

Порою, необходимо сравнивать полученные значения R или Rx, замеренные в ходе работы, с заводскими значениями.

Так можно выявить изменение в большую или меньшую сторону, что будет давать возможность говорить о состоянии оборудования – пригодно оно для работы, или же мы становимся свидетелями зарождающегося дефекта.

Загвоздка состоит в том, что сопротивление зависит от различных внешних условий. Поэтому сравниваемые величины необходимо привести к одному значению температуры.

В советских паспортах на оборудование встречались заводские данные, приведенные к температурам 20 или 15 градусов цельсия. В случае с иностранным (китайским, европейским) оборудованием иногда приходится приводить к температуре в 75 градусов. Впервые казалось чем-то необычным, но потом привыкаешь и молча пересчитываешь.

Приведение сопротивления постоянному току к нужной температуре

Теперь непосредственно к формулам приведения к температуре. Значит, начнем с формул для приведения сопротивления постоянному току к требуемой величине. Смысл такой: сопротивления при разных температурах прямо пропорциональны величинам данных температур. Формула следующая:

R(t1)/R(t2)=(K+t1)/(K+t2)

K для меди равно 235, для Al – 245.

при приведении к 15 градусам для медного проводника, например:

R15=250*R(t2)/(235+t2)

Тут всё просто: при проведении замеров омиков, померял температуру, записал данные. Потом уже на базе за компом и кофе, или же сразу на объекте на мобилке, пересчитал и привел к заводским по этой формуле.

Пересчет сопротивления изоляции к требуемой температуре

Пересчет сопротивления изоляции в общем случае. Данное математическое упражнение не носит такой распространенный характер, как в случае с омиками.

Для Rx обычно просто записывают значение в мегаомах или их производных и значение коэффициента абсорбции. Но раз есть методика, грех не упомянуть её.

Значит замерили при температуре 21,7, а необходимо привести допустим к 30 градусам по Цельсию. На помощь приходит следующая формула:

Кроме возведения в степень, отличную от двух, в данной формуле трудность вызывает определение коэффициента альфа. Альфа – температурный коэффициент сопротивления. Данный коэффициент имеется как у проводников, так и у изоляционных материалов. Но в контексте данной статьи больший смысл будет иметь приведение значений альфа для материалов, из которых изготавливают изоляцию силовых машин.

Вот некоторые значения, которые удалось раздобыть из открытых источников. Перепроверьте перед употреблением.

Пересчет сопротивления изоляции кабельных линий. Если мы имеем дело с кабелями и нужно произвести пересчет сопротивления изоляции кабеля к требуемой температуре, то в заводских инструкциях или ГОСТах даются таблицы, где приводятся значения переводных коэффициентов.

С помощью этих переводных коэффициентов можно пересчитать Rx к требуемой величине. Данные коэффициенты получаются опытным путем на заводе-изготовителе. Приведем данные из ГОСТ 3345-76. В котором описано, что R20=Rt*K.

В данной таблице описываются кабели с изоляцией из полиэтилена, пропитанной бумаги и резины.

В таблице берется значение коэффициента, которое соответствует температуре, при которой производились измерения. И затем это значение умножается на значение сопротивления изоляции. В итоге получается величина Rx, приведенная к 20 градусам Цельсия.

В данном госте описаны коэффициенты пересчета для диапазона температур от плюс 5 до 35 градусов по Цельсию. При других температурах потребуется использовать другие способы пересчета. Самый лучший вариант – это измерения при температуре, соответствующей заводским измерениям. Но это идеальный вариант и редко случается.

А если Вам выдали разные протоколы и там везде двадцать градусов, то задумайтесь, а не обманывает ли Вас подрядчик.

Пересчет сопротивления изоляции силового трансформатора.

В некоторых методиках проведения измерений на силовых трансформаторах присутствует коэффициент приведения сопротивления изоляции к требуемой температуре.

Однако, здесь слоев меньше и знать нужно следующее: есть распространенные классы изоляции. Изоляция класса А и изоляция класса В. И для них справедливы следующие правила.

Rx класса А при снижении температуры на 10 градусов становится больше в 1,5 раза.

Rx класса В при увеличении температуры на 18 градусов становится меньше в 2,0 раза.

Справедливы и обратные утверждения. Для более наглядного представления, на примере изоляции класса А, введем коэффициент изменения Rx при изменении температуры и сведем эти данные в табличку.

Разность температур

Коэффициент изменения R60

12345
1,041,081,131,171,22
1015202530
1,501,842,252,753,40

В общем, существуют способы пересчета сопротивления изоляции электрооборудования к требуемой величине. В этом могут помочь формулы или таблицы, представленные в паспортах или ГОСТах на данное оборудование.

В случае с таблицами, где приведены коэффициенты для пересчета, нужно внимательно смотреть к какому именно оборудованию относятся эти таблицы. Так как существуют нюансы, и всегда необходимо быть начеку.

В конце желаю, чтобы у Вас всегда “омики бились”.

Источник: https://pomegerim.ru/izmeritelnye-pribory/privedenie-r-rx-k-20-gradusam.php

Терморезисторы. Виды и устройство. Работа и параметры

Преобразование значения сопротивления в температуру

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры

  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.

Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными.

ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов.

Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды.

Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью.

При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения.

Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков.

При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца.

Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов.

Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик.

Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца.

Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Применение термисторов

  • Измерение температуры.
  • Бытовая техника: морозильники, фены, холодильники и т.д.
  • Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
  • Кондиционеры: распределение тепла, контроль температуры в помещении.
  • Отопительные котлы, теплые полы, печи.
  • Блокировка дверей в устройствах нагревания.
  • Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
  • В мобильных телефонах для компенсации нагрева.
  • Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
  • Контроль наполнения жидкостей.

Применение позисторов

  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/termorezistory/

Термистор и Arduino

Преобразование значения сопротивления в температуру

Термистор (терморезистор) – это резистор, который меняет свое сопротивление с изменением температуры.

Технически все резисторы являются термисторами, так как их сопротивление меняется в зависимости от температуры. Но эти изменения очень незначительны и измерить их очень сложно. Термисторы изготавливаются таким образом, чтобы сопротивление изменялось на значительную величину в зависимости от температуры. Около 100 Ом и даже больше при изменении температуры на 1 градус по Цельсию!

Существуют два вида термисторов – с NTC (negative temperature coefficient – отрицательный температурный коэффициент) и с PTC (positive temperature coefficient – положительный температурный коэффициент).

В большинстве случаев для измерения температуры используются NTC сенсоры.

PTC часто используются в качестве предохранителей – с увеличением температуры растет сопротивление, это приводит к тому, что через них проходит большая сила тока, они нагреваются и срабатывают как предохранители. Достаточно удобно для предохранительных цепей!

Если сравнивать термисторы с аналоговыми датчиками температуры типа LM35, TMP36, цифровыми вроде DS18B20, или термопарами, основными преимуществами термисторов можно назвать:

  • Во первых, они гораздо дешевле чем все перечисленные выше датчики температуры!
  • Их гораздо проще использовать в условиях повышенной влажности, так как это просто резистор.
  • Термисторы работают с любым напряжением (цифровые датчики требуют 3 или 5 В питания логики).
  • Если сравнить термистор и термопару, то первым не нужен усилитель сигнала, чтобы считывать данные. Соответственно, вы можете использовать практически любой микроконтроллер.
  • Соотношение точность показаний/цена – потрясающие. Например, термистор 10 КОм 1% может производить измерения температуры с точностью ±0.25°C! (При условии, что у вас подходящий аналогово-цифровой преобразователь на микроконтроллере).
  • Их практически невозможно поломать или повредить.

С другой стороны, диапазон температур, который можно измерить с помощью термисторов не такой широкий как у термопар и их настройка для снятия показаний тоже немного сложнее. А если на вашем контроллере нет встроенного аналогово-цифрового преобразователя, то лучше вообще обойтись цифровыми датчиками температуры.

Тем не менее простота исполнения термисторов дает им огромный бонус и они безумно популярны для базовых задач контроля температуры. Например, вы хотите, чтобы автоматически включился кондиционер, если в помещении стало слишком жарко.

Для этого вы можете использовать цифровой датчик температуры, Arduino, и реле. А можете использовать и термистор, который подключен к базе транзистора.

В результате, с повышением температуры, сопротивление падает, на транзистор подается все больше тока, пока он не включится.

Технические характеристики

Ниже приведены технические характеристики термисторов, которые чаще всего используются в DIY проектах на Arduino:

Обратите внимание на то, что сам термистор может измерять температуру до 125° C, но сами контакты порой рассчитаны на меньшую температуру. То есть, термистор не стоит использовать для контроля температуры слишком горячих жидкостей.

Тестируем термистор

Так как термисторы – по своей сути – резисторы , проверить их не составит труда. Достаточно измерить сопротивление с помощью мультиметра:

При комнатной температуре показания должны составить около 10 КОм. Например, показания при 30°C – 86°F, составляют около 8 КОм.

Подключение термистора к Arduino

Термисторы подключаются к Arduino очень просто. Достаточно использовать монтажную плату, как это показано на рисунке ниже. Так как сопротивление термистора достаточно высокое (около 10 КОм), сопротивление проводников практически не повлияет на результаты измерений.

Методика считывания аналогового напряжения

Для того, чтобы определить температуру, мы должны измерить сопротивление. При этом на Arduino нет встроенного измерителя сопротивления. Но зато есть возможность считать напряжение с помощью аналогово-цифрового конвертера.

Так что нам надо преобразовать сопротивление в напряжение. Для этого мы последовательно добавим в схему подключения еще один резистор.

Теперь, когда вы будете мерять напряжение по центру, с изменением сопротивления, будет меняться и напряжение.

Скажем, мы используем резистор с постоянным номиналом 10K и переменный резистор, который называется R. При этом напряжение на выходе (Vo), которое мы будем передавать Arduino, будет равно:

Vo = R / (R + 10K) * Vcc,

где Vcc – это напряжение источника питания (3.3 В или 5 В)

Теперь мы хотим подключить все это к Arduino. Не забывайте, что когда вы измеряете напряжение (Vi) с использованием АЦП на Arduino, вы получите числовое значение.

ADC value = Vi * 1023 / Vcc

Теперь мы совмещаем два напряжения (Vo = Vi) и получаем:

ADC value = R / (R + 10K) * Vcc * 1023 / Vcc

Что самое прекрасное, Vcc сокращается!

ADC value = R / (R + 10K) * 1023

То есть вам неважно, какое напряжение питания вы используете!

В конце мы все же хотим получить R (сопротивление). Для этого надо использовать еще одно преобразование, в котором R переносятся в одну сторону:

R = 10K / (1023/ADC – 1)

Отлично. Давайте попробуем, что из этого всего выйдет. Подключите термистор к Arduino как это показано на рисунке ниже:

Подключите один контакт резистора на 10 КОм к контакту 5 В, второй контакт резистора 10 КОм 1% – к одному контакту термистора. Второй контакт термистора подключается к земле. 'Центр' двух резисторов подключите к контакту Analog 0 на Arduino.

Теперь запустите следующий скетч для Arduino:

// значение 'другого' резистора

#define SERIESRESISTOR 10000

// к какому пину подключается термистор

#define THERMISTORPIN A0

void setup(void) {

Serial.begin(9600);

}

void loop(void) {

float reading;

reading = analogRead(THERMISTORPIN);

Serial.print(“Analog reading “);

Serial.println(reading);

// преобразуем полученные значения в сопротивление

reading = (1023 / reading) – 1;

reading = SERIESRESISTOR / reading;

Serial.print(“Thermistor resistance “);

Serial.println(reading);

delay(1000);

}

В результате вы должны получить значения, которые соответствуют измеренным с помощью мультиметра.

Более точные измерения

При проведении измерений аналоговых значений, особенно с 'шумными' платами вроде Arduino, можно использовать два метода для улучшения качества показаний. Первый – использовать пин 3.3 В для аналогового сигнала и второй – собрать небольшой массив экспериментальных значений и усреднить их.

Первое. Питание 5 В от Arduino подается напрямую от USB вашего персонального компьютера. В результате сигнал гораздо более зашумленный, чем питание от контакта 3.3 В (этот контакт предусматривает предварительную обработку через интегрированный в плату регулятор). То есть просто подключите 3.3 к контакту AREF и используйте его в качестве источника напряжения VCC.

Второе. Снять несколько показаний для того, чтобы получить усредненное значение также значительно улучшит показания, так как будут учтены внешние шумы. Для усреднения рекомендуется брать не меньше 5 значений.

В результате схема подключения и новый скетч для Arduino будут имеет следующий вид:

В этом скетче учтены оба “апгрейда”. В результате вы сможете подучить более точные показания температуры.

// к какому аналоговому контакту мы подключены

#define THERMISTORPIN A0

// сколько показаний берется для определения среднего значения

// чем больше значений, тем дольше проводится калибровка,

// но и показания будут более точными

#define NUMSAMPLES 5

// емкость второго резистора в цепи

#define SERIESRESISTOR 10000

int samples[NUMSAMPLES];

void setup(void) {

Serial.begin(9600);

// подключите AREF к 3.3 В и используйте именно этот контакт для питания,

// так как он не так сильно “шумит”

analogReference(EXTERNAL);

}

void loop(void) {

uint8_t i;

float average;

// формируем вектор из N значений с небольшой задержкой между считыванием данных

for (i=0; i< NUMSAMPLES; i++) {

samples[i] = analogRead(THERMISTORPIN);

delay(10);

}

// определяем среднее значение в сформированном векторе

average = 0;

for (i=0; i< NUMSAMPLES; i++) {

average += samples[i];

}

average /= NUMSAMPLES;

Serial.print(“Average analog reading “);

Serial.println(average);

// конвертируем значение в сопротивление

average = 1023 / average – 1;

average = SERIESRESISTOR / average;

Serial.print(“Thermistor resistance “);

Serial.println(average);

delay(1000);

}

Преобразовываем показания с термистора в температуру

Естественно, от сопротивления на термисторе нам не холодно не жарко. Нам надо узнать именно температуру! Если вам достаточно на скорую руку оценить температуру (например, если температура ниже какого-то значения X, выполняем определенную задачу, если же выше какого-то Y, выполняем другую задачу), вы можете просто использовать таблицу зависимости температуры от сопротивления.

Но скорее всего, вам понадобятся фактические значения температуры. Для этого можно использовать уравнение Стейнхарта-Харта, которое позволит реализовать достаточно достоверную аппроксимацию конвертированных значений.

Уравнение достаточно сложное и требует большого количества переменных-параметров, которых может не быть для конкретного термистора. Вместо этого уравнения можно использовать упрощенное B parameter уравнение.

Для этой зависимости нам надо знать исключительно To (этот параметр для комнатной температуры (25 °C) = 298.

15 K), B (в данном конкретном случае равен 3950 – коэффициент, который зависит от используемого термистора), и Ro (сопротивление при комнатной температуре. В данном случае он равен 10 КОм).

Подставляем R (измеренное сопротивление) и получаем значение T (температура по Кельвину), которую преобразовываем в °C.

В программе для Arduino, которая приведена ниже, рассчитывается температура в °C.

// к какому аналоговому пину мы подключены

#define THERMISTORPIN A0

// сопротивление при 25 градусах по Цельсию

#define THERMISTORNOMINAL 10000

// temp. для номинального сопротивления (практически всегда равна 25 C)

#define TEMPERATURENOMINAL 25

// сколько показаний используем для определения среднего значения

#define NUMSAMPLES 5

// бета коэффициент термистора (обычно 3000-4000)

#define BCOEFFICIENT 3950

// сопротивление второго резистора

#define SERIESRESISTOR 10000

int samples[NUMSAMPLES];

void setup(void) {

Serial.begin(9600);

analogReference(EXTERNAL);

}

void loop(void) {

uint8_t i;

float average;

// сводим показания в вектор с небольшой задержкой между снятием показаний

for (i=0; i< NUMSAMPLES; i++) {

samples[i] = analogRead(THERMISTORPIN);

delay(10);

}

// рассчитываем среднее значение

average = 0;

for (i=0; i< NUMSAMPLES; i++) {

average += samples[i];

}

average /= NUMSAMPLES;

Serial.print(“Average analog reading “);

Serial.println(average);

// конвертируем значение в сопротивление

average = 1023 / average – 1;

average = SERIESRESISTOR / average;

Serial.print(“Thermistor resistance “);

Serial.println(average);

float steinhart;

steinhart = average / THERMISTORNOMINAL; // (R/Ro)

steinhart = log(steinhart); // ln(R/Ro)

steinhart /= BCOEFFICIENT; // 1/B * ln(R/Ro)

steinhart += 1.0 / (TEMPERATURENOMINAL + 273.15); // + (1/To)

steinhart = 1.0 / steinhart; // инвертируем

steinhart -= 273.15; // конвертируем в градусы по Цельсию

Serial.print(“Temperature “);

Serial.print(steinhart);

Serial.println(” *C”);

delay(1000);

}

Для того, чтобы получить еще более точные измерения, рекомендуется учесть точный номинал резистора. В данном случае он, например, не будет равен ровно 10 КОм, а будет принимать значение близкое к 10 КОм.

Насколько точно можно определить температуру с помощью термистора и Arduino?

Вероятно, вы заметили выше, что значение температуры равно 28.16°C. Значит ли это, что точность показаний составляет 0.01°C? К сожалению, нет. У нас есть погрешность самого термистора и погрешность аналоговой электрической цепи.

Можно аппроксимировать ожидаемую погрешность, если учесть ошибку сопротивления самого термистора. Например, на термисторе указано 1%. Это значит, что при 25 °C он может выдать показания в диапазоне от 10,100 до 9900 Ом.

При 25°C разница в показаниях в 450 Ом соответствует 1°C, так что погрешность 1% составляет около +-0.25 °C (можно провести калибровку термистора при 0 °C и исключить отклонения). Также можно использовать термистор с погрешностью 0.1%.

Это поможет уменьшить ошибку в показаниях до +-0.03°C

Есть вторая погрешность, которая возникает при аналогово-цифровом преобразовании. Каждый некорректно прочитанный бит может давать отклонения около 50 Ом. В принципе эта погрешность меньше, чем ошибка самого термистора +-(0.

1°C), но, используя Arduino Uno или Arduino Pro Mini, уменьшить эту погрешность невозможно.

Если вас такая точность не устраивает, необходимо использовать более “продвинутые” можели Arduino (которые обеспечат 12-16 бит вместо 10 при аналогово-цифровом преобразовании).

В общем, термисторы обеспечивают большую точность при измерении температуры по сравнению с термопарами и большинством недорогих цифровых датчиков температуры, но, используя Arduino и термистор, вы не получите измерения с точностью более чем +-0.1 °C. Используя 1% термистор, показания не будут точнее +-0.5 °C.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Источник: http://arduino-diy.com/arduino-thermistor

Преобразование значений сопротивления в показания температуры соответствует уравнениям ГОСТ 6651

Преобразование значения сопротивления в температуру

G=3,6·k·F, (4)

где k – вес импульса, дм3/имп.;

F – частота выходного сигнала ПР, Гц.

Часовые архивные показания объема V, м3 рассчитываются по формуле:
V=10-3·k·N, (5)

где N – число импульсов за час;

k – то же, что и в формуле (4).

Примечание Минимальный предел измерений вычислителя по частоте входного сигнала ПР составляет 0,003 Гц. При отсутствии сигнала с ПР, на индикаторе вычислителя обнуление текущих показаний расхода произойдёт по истечении примерно 6 мин.

В случае если M1>M2, и M1-M2 больше суммы модулей абсолютных погрешностей измерения массы теплоносителя в прямом и обратном трубопроводах, то величина утечки теплоносителя за отчетный период по подающему и обратному трубопроводам (Му) равняется разнице абсолютных значений M1 и M2 без учета погрешностей.

Если M1>M2, и |M1-M2| меньше суммы модулей абсолютных погрешностей измерения массы теплоносителя или M2>M1 величина утечки приравнивается нулю.

Таблица 11 – Установка режима работы вычислителя

Положение переключателяРежим работы
Рабочий.

Вычислитель осуществляет

счёт тепловой энергии

Настройка.

Счёт тепловой энергии не ведётся. Ведётся счёт времени функционального отказа (Тфо).

Открыт доступ к изменению параметров вычислителя, сбросу архива, активации режима Поверка.

Поверка.

Автоматически очищаются архивы, счетчики, загружается поверочная таблица параметров (при отключении режима параметры восстанавливаются).

Вычислитель осуществляет счёт тепловой энергии.

Система менеджмента качества

ЗАО «ПромСервис» сертифицирована

на соответствие требованиям стандарта

ГОСТ Р ИСО 9001-2015 (ISO 9001:2015).

Сертификат К № 31285,

регистрационный № РОСС RU.ИК86.К00137

от 25.07.2016 г.

Page 3

Таблица 13 – Типы нештатных ситуаций

Поле Нештатная ситуация
1 Зафиксирован отказ канала(ов) измерения температуры TВ1
2 Зафиксирован отказ канала(ов) измерения температуры TВ2
3 Зафиксирован отказ канала(ов) измерения давления TB1
4 Зафиксирован отказ канала(ов) измерения давления TB2
5Зафиксирован функциональный отказ канала(ов) измерения расхода на ТВ1 (доступно для типа ПР ЭМИР-ПРАМЕР-550)
6 Зафиксирован функциональный отказ канала(ов) измерения расхода на ТВ2 (доступно для типа ПР ЭМИР-ПРАМЕР-550)
7 Зафиксировано отключение питания ПР на ТВ1 (доступно для типа 1, 2 ПР и подключенной линии контроля питания ПР)
8 Зафиксировано отключение питания ПР на ТВ2 (доступно для типа 1, 2 ПР и подключенной линии контроля питания ПР)
9 Зафиксирован выход расхода за границы диапазона измерения на одном из ПР, показания которого участвуют в расчёте тепловой энергии по ТВ1
10 Зафиксирован выход расхода за границы диапазона измерения на одном из ПР, показания которого участвуют в расчёте тепловой энергии по ТВ2
11Зафиксирована разность температур между подающим и обратным трубопроводом на ТВ1 меньшеtН (tН = 2 или 3 °С – значение, указанное в паспорте теплосчетчика)
12Зафиксирована разность температур между подающим и обратным трубопроводом на ТВ2 меньшеtН (tН = 2 или 3 °С – значение, указанное в паспорте теплосчетчика)

Допускается установка комбинации из нескольких нештатных ситуаций объединяемых по схеме “ИЛИ”.

С и г н а л Н С
0 0 1 0 0 1 0 0 0 0 0 0

Рисунок 5 – Окно меню при настройке дискретного выхода на НС

(Установлено срабатывание дискретного выхода в поле 7 и 10)

Поделитесь с Вашими друзьями:

Источник: http://www.vossta.ru/rukovodstvo-po-ekspluatacii-4218-039-12560879-re-uleyanovskaya.html?page=12

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.