Определение скорости Света

Cкорость света

Определение скорости Света
Подробности Категория: Фотометрия 12.01.2015 15:54 5776

Скоростью света называют расстояние, которое свет проходит за единицу времени. Эта величина зависит от того, в каком веществе распространяется свет.

В вакууме скорость света равна 299 792 458 м/с. Это наивысшая скорость, которая может быть достигнута. При решении задач, не требующих особой точности, эту величину принимают равной 300 000 000 м/с.

Предполагается, что со скоростью света в вакууме распространяются все виды электромагнитного излучения: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение.

Обозначают её буквой с.

Как определили скорость света

В античные времена учёные считали, что скорость света бесконечна. Позднее в учёной среде начались дискуссии по этому вопросу. Кеплер, Декарт и Ферма были согласны с мнением античных учёных. А Галилей и Гук полагали, что, хотя скорость света очень велика, всё-таки она имеет конечное значение.

Галилео Галилей

Одним из первых скорость света попытался измерить итальянский учёный Галилео Галилей. Во время эксперимента он и его помощник находились на разных холмах. Галилей открывал заслонку на своём фонаре. В тот момент, когда помощник видел этот свет, он должен был проделать те же действия со своим фонарём.

Время, за которое свет проходил путь от Галилея до помощника и обратно, оказалось таким коротким, что Галилей понял, что скорость света очень велика, и на таком коротком расстоянии измерить её невозможно, так как свет распространяется практически мгновенно.

А зафиксированное им время показывает всего лишь быстроту реакции человека.

Впервые скорость света удалось определить в 1676 г. датскому астроному Олафу Рёмеру с помощью астрономических расстояний. Наблюдая с помощью телескопа затмения спутника Юпитера Ио, он обнаружил, что по мере удаления Земли от Юпитера каждое последующее затмение наступает позже, чем было рассчитано.

Максимальное запаздывание, когда Земля переходит на другую сторону от Солнца и удаляется от Юпитера на расстояние, равное диаметру земной орбиты, составляет 22 часа.

Хотя в то время точный диаметр Земли не был известен, учёный разделил его приблизительную величину на 22 часа и получил значение около 220 000 км/с.

Олаф Рёмер

Результат, полученный Рёмером, вызвал недоверие у учёных. Но в 1849 г. французский физик Арман Ипполит Луи Физо измерил скорость света методом вращающегося затвора.

В его опыте свет от источника проходил между зубьями вращающегося колеса и направлялся на зеркало. Отражённый от него, он возвращался назад. Скорость вращения колеса увеличивалась.

Когда она достигала какого-то определённого значения, отражённый от зеркала луч задерживался переместившимся зубцом, и наблюдатель в этот момент ничего не видел.

Опыт Физо

Физо вычислил скорость света следующим образом. Свет проходит путь L от колеса до зеркала за время, равное t1= 2L/c.

Время, за которое колесо делает поворот на ½ прорези, равно t2 = T/2N, где Т – период вращения колеса, N – количество зубцов. Частота вращения v = 1/T.

Момент, когда наблюдатель не видит света, наступает при t1 = t2. Отсюда получаем формулу для определения скорости света:

с = 4LNv

Проведя вычисления по этой формуле, Физо определил, что с = 313 000 000 м/с. Этот результат был гораздо точнее.

Арман Ипполит Луи Физо

В 1838 г. французский физик и астроном Доминик Франсуа Жан Араго́ предложил использовать для вычисления скорости света метод вращающихся зеркал. Эту идею осуществил на практике французский физик, механик и астроном Жан Берна́р Лео́н Фуко́, получивший в 1862 г. значение скорости света  (298 000 000±500 000) м/с.

Доминик Франсуа Жан Араго

В 1891 г. результат американского астронома Са́ймона Нью́кома оказался на порядок точнее результата Фуко. В результате его вычислений с = (99 810 000±50 000) м/с.

Исследования американского физика Альберта Абрахама Майкельсона, использовавшего установку с вращающимся восьмигранным зеркалом, позволили ещё точнее определить скорость света. В 1926 г. учёный измерил время, за которое свет проходил расстояние между вершинами двух гор, равное 35,4 км, и получил с =  (299 796 000±4 000) м/с.

Наиболее точное измерение было проведено в 1975 г. В этом же году Генеральная конференция по мерам и весам рекомендовала считать скорость света, равной 299 792 458 ± 1,2 м/с.

От чего зависит скорость света

Скорость света в вакууме не зависит ни от системы отсчёта, ни от положения наблюдателя. Она остаётся постоянной величиной, равной 299 792 458 ± 1,2 м/с.

Но в различных прозрачных средах эта скорость будет ниже его скорости в вакууме. Любая прозрачная среда имеет оптическую плотность. И чем она выше, тем с меньшей скоростью распространяется в ней свет.

Так, например, скорость света в воздухе выше его скорости в воде, а в чистом оптическом стекле меньше, чем в воде.

Если свет переходит из менее плотной среды в более плотную, его скорость уменьшается. А если переход происходит из более плотной среды в менее плотную, то скорость, наоборот, увеличивается. Этим объясняется, почему световой луч отклоняется на границе перехода двух сред.

Источник: http://ency.info/materiya-i-dvigenie/fotometriya/378-.

Что такое скорость света и как её измеряют?

Определение скорости Света

Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.

Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость.

Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

Что такое скорость света?

В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность солнечных лучей.

Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.

В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран.

Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

Что такое скорость света своими словами?

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Чему равна скорость света?

Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.

Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами.

Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

Чему равна скорость света в вакууме?

В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

Что быстрее скорости света?

Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.

Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света.

К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

Источник: http://www.vseznaika.org/kosmos/chto-takoe-skorost-sveta-i-kak-eyo-izmeryayut/

Классические опыты по измерению скорости света

Определение скорости Света

Скорость света в свободном пространстве (вакууме) – скорость распространения любых электромагнитных волн, в том числе и световых. Представляет собой предельную скорость распространения любых физических воздействий и инвариантна при переходе от одной системы отсчета к другой.

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение.

Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями.

Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов. Точные лабораторные методы определения скорости света, выработанные в последствии, используются при геодезической съёмке.

Скорость света в среде зависит от показателя преломления среды n, различного для разных частот n излучения: с’(n) = c/n(n).

Основная трудность, на которую наталкивается экспериментатор при определении скорости распространения света, связана с огромным значением этой величины, требующим совсем иных масштабов опыта, чем те, которые имеют место в классических физических измерениях. Эта трудность дала себя знать в первых научных попытках определения скорости света, предпринятых ещё Галилеем (1607 г.).

Опыт Галилея состоял в следующем: два наблюдателя на большом расстоянии друг от друга снабжены закрывающимися фонарями.

Наблюдатель А открывает фонарь; через известный промежуток времени свет дойдет до наблюдателя В, который в тот же момент открывает свой фонарь; спустя определенное время этот сигнал дойдет до А, и последний может, таким образом, отметить время τ, протекшее от момента подачи им сигнала до момента его возвращения.

Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направлении АВ и ВА, получим, что путь АВ+ВА=2D свет проходит за время τ, т.е. скорость света с=2D/τ. Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип.

Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам; по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию.

Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света; однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.

Метод Рёмера

Впервые скорость света определил в 1676 году О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера.

Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определённого спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Метод Рёмера (1676 г.), основанный на этих наблюдениях, можно пояснить с помощью рис.9.1. Пусть в определённый момент времени Земля З1 и Юпитер Ю1 находятся в противостоянии и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера.

Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и через с – скорость света в системе координат, связанной с Солнцем, на Земле уход спутника в тень Юпитера будет зарегистрирован на  секунд позже, чем он совершается во временной системе отсчёта, связанной с Юпитером.

По истечении 0,545 года Земля З2 и Юпитер Ю2 находятся в соединении. Если в это время происходит n-е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на  секунд. Поэтому, если период обращения спутника вокруг Юпитера t, то промежуток времени T1, протекший между первым и n-м затмениями, наблюдавшимися с Земли, равен

.

Рис. 9.1. К определению скорости света по методу Рёмера

По истечении ещё 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии.

За это время совершились (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее – когда они занимали положение З3 и Ю3.

Первое затмение наблюдалось на Земле с запозданием , а последнее с запозданием  по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем:

.

Рёмер измерил промежутки времени Т1 и Т2 и нашёл, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=, поэтому . Принимая r, среднее расстояние от Земли до Солнца, равным 150·106 км, находим для скорости света значение: с=301·106 м/с.

Этот результат был исторически первым измерением скорости света.

Определение скорости света по наблюдению аберрации

В 1725-1728 гг. Брадлей предпринял наблюдения с целью выяснить, существует ли годичный параллакс звёзд, т. е. кажущееся смещение звёзд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды. Звезда в своём параллактическом движении должна описывать эллипс, угловые размеры которого тем больше, чем меньше расстояние до звезды.

Для звёзд, лежащих в плоскости эклиптики, этот эллипс вырождается в прямую, а для звёзд у полюса – в окружность. Брадлей действительно обнаружил подобное смещение. Но большая ось эллипса оказалась для всех звёзд имеющие одни и те же угловые размеры, а именно 2α=40″,9.

Брадлей объяснил (1728 г.) наблюдённое явление, названное им аберрацией света, конечностью скорости распространения света и использовал его для определения этой скорости. Годичный параллакс был установлен более ста лет спустя В. Я. Струве и Бесселем (1837, 1838 гг.).

Для простоты будем вместо телескопа пользоваться визирным приспособлением, состоящим из двух небольших отверстий, расположенных по оси трубы. Когда скорость Земли совпадает по направлению с SE, ось трубы указывает на звезду.

Когда же скорость Земли (и трубы) составляет угол j с направлением на звезду, то для того, чтобы луч света оставался на оси трубы, трубу надо повернуть на угол a (рис. 9.2), ибо за время t, пока свет проходит путь SE, сама труба перемещается на расстояние E'Е=u0t. Из рис. 9.2 можно определить поворот a.

Здесь SE определяет направление оси трубы без учёта аберрации, SE' – смещенное направление оси, обеспечивающее прохождение света вдоль оси трубы в течение всего времени t. Пользуясь тем, что угол a очень мал, так как u0

Источник: https://physoptika.ru/relyativistskie-effekty-v-optike/klassicheskie-opyty-po-izmereniyu-skorosti-sveta.html

Методы определения скорости света

Определение скорости Света

Замечание 1

В настоящее время считают, что скорость света в вакууме равна:

$c=299792458 (1,2)$ м/c.

Далее мы учтём, что:

  1. Любой метод измерения скорости света связан с испусканием и регистрацией сигнала света, то есть использованием не монохроматической, а модулированной волны, которая является группой волн.
  2. Это означает, что во всех рассмотренных далее экспериментах на самом деле измеряется групповая скорость света.
  3. Фазовая и групповая скорости равны только если отсутствует дисперсия волн в веществе.
  4. Для волны света выше названные условия строго выполняются исключительно в вакууме.

Эксперименты О. Ремера

Первым скорость света в вакууме измерил О. Ремер в 1676 году. Он проводил наблюдение затмения Ио (спутника Юпитера). Обозначим $T_0$ период обращения Ио вокруг Юпитера

Замечание 2

Если наблюдать последовательные затмения Ио с нашей планеты, то временные промежутки между двумя затмениями ($T_i$) зависят от положения Земли относительно Юпитера. Тогда, когда Земля максимально приближена к Юпитеру $T_0=T_i$.

При удалении Земли от Юпитера период $T_i$ сначала увеличивается, потом убывает до $T_0$, когда Земля занимает положение максимального удаления от Юпитера. Данное явление Ремер объяснял тем, что скорость распространения света ($c$) является конечной.

За период времени, равный времени двух последовательных затмений Ио, Земля проходит некоторой расстояние, удаляясь от Юпитера. Для того чтобы пройти свету это дополнительное расстояние необходимо дополнительное время, которое можно найти как:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

$\Delta T_i=T_i-T_0$ (1).

Рисунок 1. Метод Ремера. Автор24 — интернет-биржа студенческих работ

Величины $\Delta T_i$ составляют не более 15 с. В XVII веке, когда жил Ремер, измерять такие малые времена с достаточной точностью еще не умели. Но во время перемещения Земли из точки 1 в точку 2 (рис.1) кажущиеся запаздывания некоторого количества ($N$) затмений спутника Ио , «запаздывание» $N$ – го затмения составит существенное время:

$\Delta T=\sum\limits_{i=1}N {\left( T_{i}-T_{0} \right)\left( 2 \right).} $

В этом случае увеличения расстояния от Земли до Юпитера будет равно диаметру орбиты Земли ($d=2,99 \bullet 10{11}$) м. Скорость света найдем как:

$c=d/ \Delta T$.

В соответствии со своими измерениями Ремер получил, что скорость света составляет$ c=2,15∙(10)8$ м/c.

По современным данным получают, что $ \Delta T=16,5$ мин, тогда $c≈3∙(10)8$ м/c.

Астрономический метод Д. Брэдли

Д. Брэдли свой астрономический метод измерения скорости света предложил в 1727 году. Он рассматривал траектории движения звезд и сделал вывод о том, что в течении года они движутся по эллиптическим орбитам. Углы, под которыми видны большие полуоси данных эллипсов всех звезд с нашей планеты, составляют ∝=20,5″.

Эксцентриситет ($e$) любого эллипса связан с углом ( $\varphi$), между направлением из центра Земли на рассматриваемую звезду и плоскостью орбиты нашей планеты. При изменении $\varphi $ от $\frac{\pi }{2}$ до 0 эксцентриситет увеличивается от 0 (орбита – круг), до 1 (отрезок прямой, соответствующий большой оси «эллипса»).

Данное явление изменения эксцентриситета называют годичной аберрацией света.

Определение 1

Аберрационным смещением звезды называют видимое изменение направления луча света от данного небесного тела, которое объясняется конечной скоростью света и положением наблюдателя.

Явление аберрации применяют для нахождения значения скорости света.

Рассмотрим влияние обращения Земли вокруг Солнца за один год, на наблюдение звезды для которой $\varphi =\frac{\pi }{2}$ . В нашем случае истинное направление ($AB$) на звезду (рис.2) всегда нормально к вектору скорости движения нашей планеты по ее орбите.

Но при направлении оси телескопа по прямой $AB$, изображение звезды станет смещено в приборе относительно центра $A$ (его поля зрения). Пусть $\Delta t$ – время, за которое свет проходит расстояние $L$ внутри телескопа.

За это время телескоп и Земля перемещаются в направлении вектора скорости планеты на расстояние:

$\Delta y=v\Delta t=\frac{v}{c}L\, \left( 3 \right)$.

Для того чтобы получить изображение звезды в точке $A$ ось телескопа следует отклонить от вертикали $AB$ в сторону перемещения Земли на угол $\propto$, который подчиняется условию:

$tg\, \left( \propto \right)=\frac{\Delta y}{L}=\frac{v}{c}\left( 4 \right)$.

Наблюдателю станет казаться, что рассматриваемая им звезда находится на продолжении оси телескопа (линия $AB’$) (рис.2).

Рисунок 2. Астрономический метод Д. Брэдли. Автор24 — интернет-биржа студенческих работ

При перемещении Земли по своей орбите вектор $\vec v$ и линия $AB’$ будет медленно вращаться вокруг оси $AB$. За один год $\vec v$ совершает поворот на 360°, при этом линия $AB’$ описывает коническую поверхность с осью вращения $AB$.

Движение кажущейся линии наблюдения – это причина аберрации света, так как воспринимается исследователем как результат движения звезды по орбите. Угловой размер радиуса данной орбиты нам известен (∝=20,5″).

С другой стороны, должно выполняться соотношение (4), отсюда скорость света равна:

$c=\frac{v}{tg\, \propto }\approx 3\bullet {10}{8}\, \left( \frac{м}{с}\right)$ ,

где $v$=29800 м/c – скорость движения Земли по своей орбите.

Опыты по установлению скорости света в условиях Земли

Наиболее известные методы измерения скорости света в условиях нашей планеты:

  • А. Физо;
  • Л. Фуко;
  • А. Майкельсона.

Для определения скорости света в условиях Земли, требуется с большой точностью проводить измерения маленьких промежутков времени, необходимых свету для прохождения относительно небольших расстояний.

Первым такие измерения провел А. Физо в 1849 году. Он сконструировал установку, в которой основным элементом служило зубчатое колесо. Это колесо было способно вращаться около некоторой оси.

Если колесо было неподвижно, то свет от точечного источника проходил сквозь линзу, отражался от полупрозрачного плоского зеркала и проходил между зубцами колеса. После этого система линз направляет свет на плоское зеркало. Отразившись от этого зеркала, свет снова направляется на колесо.

На обратном пути свет проходит вновь между зубцами колеса, полупрозрачное зеркало попадает в окуляр и затем глаз наблюдателя. При следовании света от колеса и обратно он тратит время:

$\Delta t=\frac{2l}{c}\left( 5 \right)$.

где $l$ – расстояние от колеса до непрозрачного зеркала.

Если колесо вращать, то можно задать ему такую скорость вращения $(\omega_{0})$, при которой за время ∆t оно будет поворачиваться на одну вторую зубца, тогда на пути света, который отразится от непрозрачного зеркала, окажется непрозрачная часть зубца:

$\omega_{0}=\frac{2\pi }{2Z\Delta t}=\frac{\pi c}{2Zt}\left( 6 \right)$.

где $Z$ – количество зубцов на ободе колеса. Так, зная, $Z$, $l$, измеряя экспериментально угловую скорость $\omega_{0}$, находят скорость света.

В 1850 году Л. Фуко использовал метод вращающегося зеркала для измерения скорости света в воздухе. Ученый показал, что скорость света в воде меньше, чем скорость света в вакууме, что соответствует волновой теории.

Опыт Майкельсона – это комбинация методов Физо и Фуко. Исследователь использовал вращающуюся восьмигранную зеркальную призму в своих экспериментах по определению скорости света.

Одним из самых точных методов измерения скорости света является эксперимент, в котором в роли высокочастотного модулятора интенсивности света применяется ячейка Керра. При этом устройство регистрирующее свет – это специальный фотоэлемент.

Источник: https://spravochnick.ru/fizika/metody_opredeleniya_skorosti_sveta/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.