Определение материальной точки

Кинематика материальной точки: основные понятия, элементы

Определение материальной точки

Темой нашей сегодняшней статьи станет кинематика материальной точки. Что это вообще такое? Какие понятия фигурируют в ней и какое определение необходимо дать этому термину? На эти и многие другие вопросы мы сегодня и постараемся ответить.

Определение и понятие

Кинематика материальной точки представляет собой не что иное, как подраздел физики под названием «механика». Она, в свою очередь, изучает закономерности движения тех или иных тел. Кинематика материальной точки занимается также этой задачей, однако делает это не в общем виде. На самом деле этот подраздел изучает методы, которые позволяют описать движение тел.

При этом для исследования подходят только так называемые идеализированные тела. К таковым относятся: материальная точка, абсолютно твердое тело и идеальный газ. Рассмотрим понятия подробнее. Все мы со школьной скамьи знаем, что материальной точкой принято называть тело, размерами которого в той или иной ситуации можно пренебречь.

К слову, кинематика поступательного движения материальной точки впервые начинает фигурировать в учебниках седьмого класса по физике. Это наиболее простая отрасль, поэтому начинать знакомство с наукой при ее помощи наиболее удобно. Отдельным вопросом является то, какие имеются элементы кинематики материальной точки.

Их достаточно много, причем условно их можно разбить на несколько уровней, имеющих различную сложность для понимания. Если говорить, например, о радиус-векторе, то, в принципе, в его определении нет ничего запредельно сложного. Однако согласитесь с тем, что гораздо проще его понять будет студенту, нежели ученику средней или старшей школы.

Да и если честно говорить, нет никакой необходимости объяснять особенности этого термина старшеклассникам.

Еще много-много лет назад великий ученный Аристотель посвятил львиную долю своего свободного времени изучению и описанию физики как отдельной науки. В том числе он работал и над кинематикой, пытаясь представить ее основные тезисы и понятия, так или иначе применяемые при попытках решения практических и даже обыденных задач.

Аристотель дал первоначальные представления о том, что представляют собой элементы кинематики материальной точки. Его работы и труды очень ценны для всего человечества. Тем не менее в своих выводах он сделал немалое количество ошибок, и виной тому были определенные заблуждения и просчеты.

Работами Аристотеля в свое время заинтересовался другой ученный – Галилео Галилей. Один из основополагающих тезисов, выдвинутых Аристотелем, гласил о том, что движение тела происходит только в том случае, если на него действует какая-то сила, определенная по интенсивности и направлению. Галилей доказал, что это ошибка.

Сила будет оказывать влияние на параметр скорости движения, но не более. Итальянец показал, что сила есть причина ускорения, и оно может возникнуть только обоюдно с ней. Также Галилео Галилей уделил немалое внимание изучению процесса свободного падения, выводя соответствующие закономерности.

Наверное, все помнят о его знаменитых опытах, которые он проводил на Пизанской башне. В своих работах основы кинематических решений использовал и физик Ампер.

Как говорилось ранее, кинематика изучает способы описания движения идеализированных объектов. При этом на практике могут применяться основы математического анализа, обыкновенной алгебры и геометрии.

Но какие же понятия (именно понятия, а не определения и на параметрические величины) лежат в основе этого подраздела физики? Во-первых, все должны четко усвоить, что кинематика поступательного движения материальной точки рассматривает движение без учета силовых показателей.

То есть для решения соответствующих задач нам не понадобятся формулы, связанные с силой. Она кинематикой не учитывается, сколько бы их ни было – одна, две, три, хоть несколько сотен тысяч. Тем не менее существование ускорения все же предусматривается.

В целом ряде задач кинематика движения материальной точки предписывает определить величину ускорения. Однако причины возникновения этого явления (то есть силы и их природа) не рассматриваются, а опускаются.

Классификация

Мы выяснили, что кинематика исследует и применяет методы описания движения тел без оглядки на воздействующие на них силы. Кстати говоря, такой задачей занимается уже другой подраздел механики, который называют динамикой.

Вот уже там применяются законы Ньютона, которые позволяют на практике определить достаточно многие параметры при малом количестве известных первоначальных данных. Основные понятия кинематики материальной точки – это пространство и время.

А в связи с развитием науки как в целом, так и в данной области, возник вопрос о целесообразности использования подобной комбинации.

С самого начала существовала классическая кинематика. Можно говорить о том, что ей свойственно не просто наличие как временных, так и пространственных промежутков, но и их независимость от выбора той или иной системы отсчета. Кстати, об этом мы поговорим несколько позже. Сейчас же просто объясним, о чем идет речь.

Пространственным промежутком в данном случае будет считаться отрезок, временным – интервал времени. Вроде бы все должно быть понятно. Так вот, эти промежутки будет в классической кинематике считаться абсолютными, инвариантными, иными словами не зависящими от перехода из одной системы отсчета в другую.

То ли дело релятивистская кинематика. В ней промежутки при переходе между системами отсчета могут изменяться. Правильнее даже будет сказать, что не могут, а должны, наверное. В силу этого одновременность двух случайных событий также становится относительной и подлежит особому рассмотрению.

Именно поэтому в релятивистской кинематике два понятия – пространство и время – объединяются в одно.

Кинематика материальной точки: скорость, ускорение и другие величины

Чтобы хотя бы немного понимать данный подраздел физики, необходимо ориентироваться в наиболее главных понятиях, знать определения и представлять, что собой представляет в общем плане та или иная величина. Ничего сложно в этом нет на самом деле, все очень легко и просто. Рассмотрим, пожалуй, для начала основные понятия, применяемые в задачах по кинематике.

Движение

Механическим движением мы будем считать процесс, в ходе которого тот или иной идеализированный объект изменяет свое положение в пространстве. При этом можно говорить о том, что изменение происходит относительно других тел. Необходимо учитывать и тот факт, что одновременно происходит и установление определенного временного промежутка между двумя событиями.

Например, можно будет выделить определенный интервал, образовавшийся за время, прошедшее между тем, как тело прибыло из одной позиции в другую. Отметим также, что тела при этом могут и будут взаимодействовать между собой, согласно общим законам механики. Это как раз то, чем чаще всего оперирует кинематика материальной точки.

Система отсчета – следующее понятие, которое неразрывно связано с ней.

Координаты

Их можно назвать обыкновенным данными, которые позволяют определить положение тела в тот или иной момент времени. Координаты неразрывно связаны с понятием системы отсчета, а также координатной сеткой. Чаще всего представляют собой комбинацию букв и цифр.

Из названия уже должно быть понятно, что он представляет собой. Тем не менее все же поговорим об этом подробнее. Если точка движется по некоторой траектории, а мы точно знаем начало той или иной системы отсчета, то можно в любой момент времени провести радиус-вектор. Он будет соединять первоначальное положение точки с мгновенным или конечным.

Траектория

Ею будет называться непрерывная линия, которая прокладывается в результате движения материальной точки в той или иной системе отсчета.

Скорость (как линейная, так и угловая)

Это величина, которая может рассказать о том, как быстро тело проходит тот или иной промежуток дистанции.

Ускорение (и угловое, и линейное)

Показывает, по какому закону и как интенсивно изменяется скоростной параметр тела.

Пожалуй, вот они – основные элементы кинематики материальной точки. Следует отметить, что и скорость, и ускорение являются векторными величинами.

А это означает то, что они не просто имеют некоторое показательное значение, но и определенное направление. К слову, они могут быть направлены как в одну сторону, так и в противоположные.

В первом случае тело будет ускоряться, во втором – тормозить.

Простейшие задачи

Кинематика материальной точки (скорость, ускорение и расстояние в которой являются практически фундаментальными понятиями) насчитывает даже не то что огромное количество задач, а много их различных категорий. Давайте попробуем решить достаточно простенькую задачку по определению пройденного телом расстояния.

Предположим, условия, которые мы имеем на руках, следующие. Автомобиль гонщика стоит на стартовой черте. Оператор подает отмашку флагом, и машина резко срывается с места.

Определить, сможет ли она поставить новый рекорд в состязании гонщиков, если дистанцию, равную одной сотне метров, очередной лидер прошел за 7,8 секунд.

Ускорение автомобиля принять равным 3 метра, деленным на секунду в квадрате.

Итак, как же решить подобную задачу? Она достаточно интересная, поскольку от нас требуется не «сухое» определение тех или иных параметров. Она скрашена оборотами и определенной ситуацией, что разнообразит процесс решения и поиска показателей. Но чем же мы должны руководствоваться перед тем, как подступиться к заданию?

1. Кинематика материальной точки предусматривает использование в данном случае ускорения.

2. Предполагается решение при помощи формулы расстояния, поскольку его численное значение фигурирует в условиях.

Решается задача вообще-то просто. Для этого берем формулу расстояния: S = VoT + (-) AT2/2. В чем заключается смысл? Нам нужно узнать, за какое время гонщик пройдет обозначенную дистанцию, а затем сравнить показатель с рекордом, чтобы узнать, побьет он его или же нет. Для этого выделим время, получим формулу для него: AT2 + 2VoT – 2S.

Это есть не что иное, как квадратное уравнение. Но автомобиль срывается с места, значит, начальная скорость будет равна 0. При решении уравнения дискриминант окажется равным 2400. Для поиска времени необходимо извлечь корень. Сделаем до второго знака после запятой: 48,98. Найдем корень уравнения: 48,98/6 = 8,16 секунд.

Получается, что гонщик не сможет побить существующий рекорд.

Источник: https://FB.ru/article/223789/kinematika-materialnoy-tochki-osnovnyie-ponyatiya-elementyi

Кинематика материальной точки

Определение материальной точки

Даны основные формулы кинематики материальной точки, их вывод и изложение теории.

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz:
,
где – единичные векторы (орты) в направлении осей x, y, z.

Скорость точки:
;
.
. Единичный вектор в направлении касательной к траектории точки:

.

Ускорение точки:
;
;
;
;     ;

Тангенциальное (касательное) ускорение:
;
;
.

Нормальное ускорение:
;
;
.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.

Радиус кривизны траектории:
.

Далее приводится вывод этих формул и изложение теории кинематики материальной точки.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M. Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O. Тогда положение точки M однозначно определяются ее координатами (x, y, z). Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M.
,
где – единичные векторы в направлении осей x, y, z.

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)  
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки – это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости.

Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время .

Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Скорость материальной точки – это производная ее радиус-вектора по времени.

Согласно определению скорости и определению производной:
Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:

,

где мы явно обозначили зависимость координат от времени. Получаем:
, где

,

,
– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора

.

Таким образом
. Модуль скорости:

.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра.

Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки.

То есть скорость материальной точки направлена по касательной к траектории.

Касательная к траектории точки

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при . Введем обозначения:

;

;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины:
. Покажем, что длина этого вектора равна единице. Действительно, поскольку

, то:

.

Тогда вектор скорости точки можно представить в виде:
.

Далее мы считаем, что если над буквой векторной величины не стоит стрелка, то это обозначает модуль вектора.

Ускорение материальной точки

Ускорение материальной точки – это производная ее скорости по времени.

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
. Модуль ускорения:

.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
. Дифференцируем ее по времени, применяя правило дифференцирования произведения:

.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
. Здесь и далее, два вектора в круглых скобках обозначают скалярное произведение векторов. Продифференцируем последнее уравнение по времени:

;

;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
. Вторую компоненту называют нормальным ускорением:

.

Тогда полное ускорение:

(2)   .

Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к касательной.

Поскольку , то
(3)   .

Тангенциальное (касательное) ускорение

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
. Здесь мы положили:

.

Отсюда видно, что тангенциальное ускорение равно проекции полного ускорения на направление касательной к траектории или, что тоже самое, на направление скорости точки.

Тангенциальное (касательное) ускорение материальной точки – это проекция ее полного ускорения на направление касательной к траектории (или на направление скорости).

Символом мы обозначаем вектор тангенциального ускорения, направленный вдоль касательной к траектории. Тогда – это скалярная величина, равная проекции полного ускорения на направление касательной. Она может быть как положительной, так и отрицательной.

Подставив , имеем:
.

Подставим     в формулу:
. Тогда:

.

То есть тангенциальное ускорение равно производной по времени от модуля скорости точки. Таким образом, тангенциальное ускорение приводит к изменению абсолютной величины скорости точки. При увеличении скорости, тангенциальное ускорение положительно (или направлено вдоль скорости). При уменьшении скорости, тангенциальное ускорение отрицательно (или направлено противоположно скорости).

Радиус кривизны траектории

Теперь исследуем вектор .

Радиус кривизны траектории

Рассмотрим единичный вектор касательной к траектории . Поместим его начало в начало системы координат. Тогда конец вектора будет находиться на сфере единичного радиуса. При движении материальной точки, конец вектора будет перемещаться по этой сфере.

То есть он будет вращаться вокруг своего начала. Пусть – мгновенная угловая скорость вращения вектора в момент времени . Тогда его производная – это скорость движения конца вектора. Она направлена перпендикулярно вектору . Применим формулу для вращающегося движения.

Модуль вектора:
.

Теперь рассмотрим положение точки для двух близких моментов времени. Пусть в момент времени точка находится в положении , а в момент времени – в положении . Пусть и – единичные векторы, направленные по касательной к траектории в этих точках.

Через точки и проведем плоскости, перпендикулярные векторам и . Пусть – это прямая, образованная пересечением этих плоскостей. Из точки опустим перпендикуляр на прямую .

Если положения точек и достаточно близки, то движение точки можно рассматривать как вращение по окружности радиуса вокруг оси , которая будет мгновенной осью вращения материальной точки.

Поскольку векторы и перпендикулярны плоскостям и , то угол между этими плоскостями равен углу между векторами и . Тогда мгновенная скорость вращения точки вокруг оси равна мгновенной скорости вращения вектора :
.
Здесь – расстояние между точками и .

Таким образом мы нашли модуль производной по времени вектора :
.
Как мы указали ранее, вектор перпендикулярен вектору . Из приведенных рассуждений видно, что он направлен в сторону мгновенного центра кривизны траектории. Такое направление называется главной нормалью.

Нормальное ускорение

Нормальное ускорение

направлено вдоль вектора . Как мы выяснили, этот вектор направлен перпендикулярно касательной, в сторону мгновенного центра кривизны траектории.

Пусть – единичный вектор, направленный от материальной точки к мгновенному центру кривизны траектории (вдоль главной нормали). Тогда
;
.

Поскольку оба вектора и имеют одинаковое направление – к центру кривизны траектории, то
.

Из формулы (2) имеем:
(4)   .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2)   .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Нормальное ускорение материальной точки – это проекция ее полного ускорения на направление, перпендикулярное к касательной к траектории.

Подставим . Тогда
.
То есть нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.

Отсюда можно найти радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
. Здесь мы применили формулу для векторного произведения трех векторов:

,

в которую подставили

.

Итак, мы получили:
;
. Приравняем модули левой и правой частей:

.

Но векторы и взаимно перпендикулярны. Поэтому
. Тогда

.

Это известная формула из дифференциальной геометрии для кривизны кривой.

Источник: https://1cov-edu.ru/termeh/kinematika/tochki/

Материальная точка

Определение материальной точки

Аксиома

Первое задание

Второе задание

Под материальной точкой подразумевается макроскопическое тело, свойствами которой (масса, вращение, форма и т.д.) можно пренебречь, если есть необходимость описании его движения. О том, что такое материальная точка, вы узнаете из этой статьи.

Если говорить о том, может ли это тело рассмотрено в качестве такой точки, то здесь все определяется не размерами тела, а от поставленных в задаче условий.

Как пример, радиус нашей планеты на порядок меньше расстояния между Солнцем и Землей, а орбитальное движение может быть описано как раз в виде движения материальной точки, которая обладает аналогичной земле массой и располагается в ее центре.

Однако если рассматривать суточное движение планеты вокруг собственной оси, тогда заменять ей на материальную точку бессмысленно. Модель точки рассматриваемого типа к конкретному телу определяется не размерами самого тела, а в большей степени условиями его перемещения.

Как пример, согласно теореме о движении центра масс системы при перемещении поступательного типа каждое твёрдое тело можно рассматривать в качестве материальной точки, положение которой аналогично центру масс тела.

Такие физические свойства точки как масса, скорость, положение и прочие определяют её поведение в каждый момент времени.

Положение в пространстве рассматриваемой точки определяется в виде положения геометрической точки. В механике материальная точка имеет массу, постоянную во времени и независимую от каких-либо факторов её перемещения и взаимодействия с прочими телами. Если использовать подход к построению механики, основанный на аксиомах, тогда за одну них берется следующее:

Аксиома

Материальной точкой называют тело – геометрическую точку, которой соответствует скаляр, именуемый массой: (r и m), где r является вектором в евклидовом пространстве, который относится к той или иной декартовой координатной системе. Масса постоянна и независима от положения точки во времени и пространстве.

Материальная точка запасает механическую энергию исключительно как кинетическую энергию её перемещения в пространстве, либо в качестве потенциальной энергии, которая вступает во взаимодействие с полем.

Это говорит о том, что данная точка не может быть деформирована, вращаться вокруг своей же оси, а также она не реагирует на её изменения в пространстве.

Параллельно с этим материальная точка движется с изменением её расстояния от пары углов Эйлера и какого-либо мгновенного центра поворота, задающих линии направление, а она в свою очередь соединяет эту точку с центром. Такой метод весьма распространен в механике.

Методика, по которой изучаются законы движения реальных объектов за счет исследования перемещения идеальной модели – это основа механики.

Каждое макроскопическое тело может быть представлено в виде взаимодействующих друг с другом материальных точек, обладающими массами, соответствующими массам его частей.

Изучение перемещения данных частей сводится к тому, что проводится изучение движения рассматриваемых точек.

Сам термин несколько ограничен в применении. Как пример разреженный газ при высоком температурном режиме характеризуется небольшим размером молекул относительно типичного расстояния между ними. И хотя этим можно пренебрегать в некоторых случаях и принимать молекулу за материальную точку, в основном все не так.

Внутренняя энергия молекулы определяется колебаниями и вращениями, а её ёмкость зависит от размеров, структуры и свойств частицы.

В некоторых случаях одноатомные молекулы могут быть рассмотрены как примеры материальной точки, но даже у них при высоком температурном режиме возбуждаются электронные оболочки из-за столкновений молекул с дальнейшим высвечиванием.

Первое задание

Можно ли считать материальной точкой:

  • а) машину, въезжающую в гараж;
  • б) машину на трассе Москва – Ростов?

Ответ:

  • а) въезжающая в гараж машина не может считаться таким объектом, поскольку разница в размерах между автомобилем и гаражом относительно мала;
  • б) авто на трассе Москва – Ростов можно рассматривать как такую точку, поскольку размеры транспортного средства на порядки меньше пути.

Второе задание

Можно ли считать материальной точкой:

  • а) мальчика, идущего домой из школы (путь 1 км);
  • б) мальчика, делающего физические упражнения?
  • а) Поскольку путь от школы к дому составляет километр, мальчик может быть рассмотрен в качестве такой точки, поскольку по своим размерам он очень мал относительно проходимого расстояния.
  • б) когда этот же ребенок выполняет утреннюю зарядку, его нельзя принимать за материальную точку.

Источник: https://sciterm.ru/spravochnik/materialnaya-tochka/

Понятие «материальная точка»

Понятие «материальная точка» – это абстракция. В природе материальных точек не существует. Но постановка некоторых задач механики дает возможность использовать данную абстракцию.

Когда мы говорим о точке в кинематике, то ее можно рассматривать как математическую точку. В кинематике под точкой понимается небольшая метка на теле или само тело, если его размеры малы в сравнении с теми расстояниями, которое тело преодолевает.

В таком разделе механики, как динамика, нужно уже говорить о материальной точке, как точке, которая обладает массой. Основные законы классической механики относятся к материальной точке, телу, которое не имеет геометрических размеров, но имеет массу.

В динамике размеры и форма тела во многих случаях не оказывает влияние на характер движения, в этом случае тело можно рассматривать как материальную точку. Но в других условиях, это же тело точкой считать нельзя, так как его форма и размер оказываются решающими в описании движения тела.

Так, если человека интересует какое количество времени необходимо автомобилю, чтобы доехать от Москвы до Тюмени, то совершенно не обязательно знать, как движется при этом каждое из колес машины. Но, если автомобилист пытается втиснуть свой автомобиль на узкое парковочное место, принимать машину за материальную точку нельзя, так как имеют значение размеры автомобиля.

Можно принимать Землю за материальную точку, если мы рассматриваем движение нашей планеты вокруг Солнца, но так нельзя поступить, при изучении ее движения вокруг собственной оси, если мы пытаемся установить причины, по которым день сменяет ночь. Так, одно и то же тело в одних условиях можно рассматривать как материальную точку, в других условиях этого делать нельзя.

Существуют некоторые виды движения, в которых тело можно смело принимать за материальную точку. Так, например, при поступательном движении твердого тела все его части движутся одинаково, поэтому в таком движении тело обычно рассматривают как точку с массой, которая равна массе тела. Но если это же тело вращается вокруг своей оси, то его за материальную точку принять нельзя.

И так, материальная точка является простейшей моделью тела. Если тело можно уподобить материальной точке, то это существенно упрощает решение задачи по изучению его движения.

Разные виды движения точки различают, в первую очередь, по виду траектории. В том случае, если траекторией движения точки является прямая линия, то движение называют прямолинейным.

В отношении движения макроскопического тела имеет смысл говорить о прямолинейном или криволинейном движении тела только тогда, когда можно при описании движения ограничиться рассмотрением перемещения одной точки этого тела.

У тела, в общем случае разные точки могут совершать разные типы движения.

Система материальных точек

Если тело нельзя принять за материальную точку, то его можно представить в виде системы материальных точек. При этом тело мысленно делят на бесконечно малые элементы, каждый из которых можно принять за материальную точку.

В механике каждое тело можно представить в виде системы материальных точек. Имея законы движения точки, мы можем считать, что у нас есть метод описания любого тела.

В механике существенную роль играет понятие абсолютно твердого тела, которое определяют как систему материальных точек, расстояния между которыми неизменны, при любых взаимодействиях этого тела.

Примеры задач с решением

Пример 1

Задание. В каком случае тело можно считать материальной точкой:

Спортсмен на соревнованиях бросает ядро. Ядро можно считать материальной точкой?

Шар вращается вокруг своей оси. Шар – это материальная точка?

Гимнастка выполняет упражнение на брусьях.

Бегун преодолевает дистанцию.

Ответ. 1) Ядро можно считать материальной точкой.

2) Вращающийся шар считать материальной точкой нельзя, так как, описывая его вращение, следует учитывать, что в таком движении разные его точки движутся по – разному.

3) Гимнастку считать материальной точкой нельзя.

4) Бегуна считать материальной точкой можно, если нет необходимости рассматривать детально его бег, в особенности на финише, например при помощи фотофиниша.

    Пример 2

Задание. При каких условиях движущийся вверх камень можно считать материальной точкой. См. рис.1 и рис.2.

Решение: На рис. 1 размеры камня нельзя считать малыми в сравнении с расстоянием до него. В этом случае камень нельзя считать материальной точкой

На рис. 2 камень вращается, следовательно, его нельзя считать материальной точкой.

Ответ. Камень, брошенный вверх можно считать материальной точкой, если его размеры будут малы в сравнении с расстоянием до него, и он будет двигаться поступательно (вращения не будет).

   

Читать дальше: мгновенная скорость.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_48_materialnaja_tochka.php

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.