Натуральное число определение

Содержание

Натуральное число – Квадратный Корень

Натуральное число определение

Натуральные числа (естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел — числа, используемые при:

  • перечислении (нумеровании) предметов (первый, второй, третий, …);
  • обозначении количества предметов (нет предметов, один предмет, два предмета, …). Принят в трудах Бурбаки, где натуральные числа определяются как мощности конечных множеств.

Отрицательные и нецелые (рациональные, вещественные, …) числа натуральными не являются.

Множество всех натуральных чисел принято обозначать знаком . Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.

Аксиомы Пеано

Основная статья: Аксиомы Пеано

Множество будем называть множеством натуральных чисел, если зафиксирован некоторый элемент (единица) и функция (функция следования) так, что выполнены следующие условия

  1. ( является натуральным числом);
  2. Если , то (Число, следующее за натуральным, также является натуральным);
  3. (1 не следует ни за каким натуральным числом);
  4. Если и , тогда (если натуральное число непосредственно следует как за числом , так и за числом , то );
  5. Аксиома индукции. Пусть  — некоторый одноместный предикат, зависящий от параметра — натурального числа . Тогда:

если и , то (Если некоторое высказывание верно для (база индукции) и для любого при допущении, что верно , верно и (индукционное предположение), то верно для любых натуральных ).

Перечисленные аксиомы отражают наше интуитивное представление о «натуральном ряде».

Принципиальным фактом является то, что эти аксиомы по сути однозначно определяют натуральные числа (категоричность системы аксиом Пеано). А именно, можно доказать (см.[1], а также краткое доказательство[2]), что если и  — две модели для системы аксиом Пеано, то они необходимо изоморфны, то есть существует биекция такая, что и для всех .

Поэтому, достаточно зафиксировать в качестве какую-либо одну конкретную модель множества натуральных чисел, например, ту, что описана ниже.

Теоретико-множественное определение (Определение Фреге-Рассела)

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Ноль как натуральное число

Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах Пеано заменяют на . В этом случае ноль считается натуральным числом. При определении через классы равномощных множеств 0 является натуральным числом по определению.

Специально отбрасывать его было бы неестественно. Кроме того, это значительно усложнило бы дальнейшее построение и применение теории, так как в большинстве конструкций ноль, как и пустое множество, не является чем-то выделенным.

Одним из преимуществ натурального нуля является то, что при этом образует полугруппу с единицей.

В русской литературе обычно ноль исключён из числа натуральных чисел , а множество натуральных чисел с нулём обозначается как . Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как , а без нуля как .

В международной математической литературе, с учётом сказанного выше и во избежание неоднозначностей, множество обычно называют множеством положительных целых чисел и обозначают . Множество зачастую называют множеством неотрицательных целых чисел и обозначают .

Операции над натуральными числами

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • Сложение. Слагаемое + Слагаемое = Сумма
  • Умножение. Множитель * Множитель = Произведение
  • Возведение в степень , где a — основание степени и b — показатель степени. Если основание и показатель натуральны, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

  • Вычитание. Уменьшаемое Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
  • Деление. Делимое / Делитель = (Частное, Остаток). Частное и остаток от деления на определяются так: , причём . Заметим, что именно последнее условие запрещает деление на ноль, так как иначе можно представить в виде , то есть можно было бы считать частным , а остатком = .

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

Теоретико-множественные определения

Воспользуемся определением натуральных чисел как классов эквивалентности конечных множеств. Будем обозначать класс эквивалентности множества A относительно биекций как [A]. Тогда основные арифметические операции определяются следующим образом:

где  — дизъюнктное объединение множеств,  — прямое произведение,  — множество отображений из B в A. Можно показать, что полученные операции на классах введены корректно, то есть не зависят от выбора элементов классов, и совпадают с индуктивными определениями.

Алгебраическая структура

Сложение превращает множество натуральных чисел в полугруппу с единицей, роль единицы выполняет 0.

Умножение также превращает множество натуральных чисел в полугруппу с единицей, при этом единичным элементом является 1.

С помощью замыкания относительно операций сложения-вычитания и умножения-деления получаются группы целых чисел и рациональных положительных чисел соответственно.

См. также

  • Отрицательное число
  • Ноль
  • Нумерология

Источник: https://www.sites.google.com/site/yshanchikpro100/home/naturalnoe-cislo

Натуральные числа

Натуральное число определение

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Запомните!

Натуральные числа — это числа, начиная с 1, получаемые при счете предметов.

1, 2, 3, 4, 5…

Наименьшее натуральное число — 1.

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2, тремя — число 3.

| — 1, || — 2, ||| — 3, ||||| — 5 …

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С помощью этих цифр можно записать любое натуральное число.

Запомните!

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1.

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной.

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Важно!

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Запомните!

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название класса

Название разряда

Цифра (символ)

МиллиардыМиллионыТысячиЕдиницы
Сотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
783502197048
Название класса

Название разряда

Цифра (символ)

МиллиардыМиллионыТысячиЕдиницы
Сотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
783502197048

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Теперь прочтем число 783 502 197 048 из таблицы: 783 миллиарда 502 миллиона 197 тысяч 48.

Числа 1, 10, 100, 1000… называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.
307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Источник: http://math-prosto.ru/?page=pages/set-of-numbers/natural.php

Что такое натуральное число в математике?

Натуральное число определение

Все дети с ранних лет изучают математику. Поначалу она позволяет узнать простые вещи, легко применимые в жизни, но с течением времени задачи постоянно усложняются. Появляется и новая терминология, по которой не всегда можно понять, что имеется в виду. Например, что такое натуральное число в математике?

В древние времена люди не пользовались цифрами так, как делают это сейчас, однако счет всё равно был им необходим. Предметы сравнивались по количеству с чем-то, например, кто-то имел столько же ягод, сколько и пальцев на одной руке. Постепенно люди изобрели систему счета, а с ней появились и новые термины.

Это понятие относится к одним из самых старых, так как оно родилось из-за древней необходимости научиться считать количество обычных предметов. Что значит натуральное число? Чаще всего дается следующее определение – это числа, которые возникают при подсчете, причем происходит подобное естественным образом.

Отсюда берется и второе название этого термина – естественные числа. Своей последовательностью, расположенностью по возрастанию, они образуют натуральный ряд. Иначе говоря, все цифры, начиная с единицы, которые используются для подсчета предметов, являются натуральными.

Таким образом, существует самое малое натуральное число – им является единица. Наибольшего же не бывает, так как к любой цифре можно добавить ещё один. Ноль не входит в натуральный ряд, так как с его помощью нельзя ничего посчитать, хотя далеко не все ученые с этим согласны.

Подобные цифры определяются двумя главными методами. Первый из них подразумевает перечисление всего имеющегося, а второй называет итоговое количество.

  • Первый метод определения является подсчетом или нумерацией имеющихся предметов. Например, видя перед собой несколько яблок, человек может посчитать их – одно, два, три…
  • Второй метод определения называет итоговое количество имеющихся предметов. Таким образом, если яблок нет совсем, то можно сказать, что предметов нет. Это значит, что при подсчете появляется ноль.

В этой цифре и заключается основная разница между двумя данными методами определения. В первом случае минимальным числом является единица, а во втором возможно и использование нуля. Математики так и не смогли прийти к единогласному решению о том, какой метод лучше, и стоит ли ставить ноль в один ряд с другими натуральными числами.

Как правило, применяется всё же первый вариант, оставляющий спорную цифру в стороне. Тем не менее, в некоторых трудах, вроде Бурбаки, используется другой подход. Помимо этого, ноль является неотъемлемой и широко применяемой частью в мире программирования.

Особенности натуральных чисел

Главное, о чем нужно помнить при упоминании подобных чисел, так это об их обязанности быть естественными. Они должны быть такими, чтобы с их помощью было возможно подсчитать количество каких-то предметов. Естественные числа должны быть доступными и понятными для всех.

По этой причине к ним не относятся отрицательные показатели и различные нецелые числа. Например, рациональное, обозначающееся в виде дроби, или вещественные, представляющее собой математический объект, не смогут стать частью натурального ряда.

Что такое натуральное число в математике? Все эти цифры принято обозначать буквой N. Её выбрали потому, что на латинском языке слово естественный пишется как naturalis, то есть начинается с литеры N. Число, подразумеваемое под этим обозначением, бесконечно.

Нередко для доказательства сложных теорем полезно помнить и о нуле. Он входит в расширенный натуральный ряд, который обозначают с помощью соответствующей цифры, приписанной снизу к букве N. Иногда вместо неё применяете Z, вновь с тем же маленьким нулем рядом.

В математике существует понятие замыкания. Оно обозначает минимально возможное расширение какого-то множества, операции с которым не выходят за его пределы. В отношении натуральных чисел выделяется несколько таких замкнутых операций.

  • В первую очередь, это сложение. Естественные числа легко можно сложить друг с другом, чтобы получить какую-то сумму.
  • Возможно и умножение. Два натуральных множителя дадут произведение.
  • Наконец, используется возведение в степень. Оно состоит из основания и показателя. В том случае, если обе части представлены натуральными числами, то и результат получится таким же.

Иногда в данном вопросе рассматриваются ещё две операции. Их проблема заключается в том, что они применимы не для всех случаев. Иногда подобное может существовать, а иногда нет. К этим операциям относятся:

  • Вычитание. Оно даст натуральное число только в том случае, если первая цифра будет больше второй. Иначе возможно получение отрицательного числа, не относящегося к натуральным, или же нуля, который является спорным;
  • То же самое относится и к делению. В самых простых примерах все числа в итоге будут естественными, однако существует множество ситуаций, в результате которых получатся нецелые.

Как правило, наука сосредотачивается на первых двух операциях – сложении и вычитании. Интересно, что именно они способствуют созданию кольца целых чисел – это происходит через бинарные сложения и умножения.

Что стоит знать о натуральных числах?

Цифры, используемые для счета, не всегда были такими, как мы их знаем сегодня. Изначально применялось относительно схематическое изображение, постепенно сформировавшееся в римские цифры.

Современный же вариант зародился в Индии, примерно полторы тысячи лет назад. Впоследствии они были привезены в европейские страны арабами, за что и получили своё известное название – арабские цифры. Несмотря на то, что натуральных чисел может быть любое количество, цифр всего десять – от нуля и до девятки.

Если рассматривать натуральный ряд, то в нем каждое число будет отличаться от предыдущего или последующего на единицу, при том, что сам ряд бесконечен. Однако, в процессе счета появляется так называемая десятичная позиционная.

Под этим словом подразумевается тот факт, что когда числа доходят до десяти, они образуют новую единицу старшего разряда. Эти разряды бывают самыми разными – в частности, к ним относятся миллионы и миллиарды. В зависимости от их количества, разряды объединяют по классам.

Например, миллиарды могут исчисляться десятками или сотнями. Это будут разряды, но все они в целом образуют класс миллиардов. То же самое происходит и с разрядами миллионов, тысяч, сотен, десяток и единиц.

Источник: https://topkin.ru/voprosy/nauka-voprosy/chto-takoe-naturalnoe-chislo-v-matematike/

Натуральные числа. Множество натуральных чисел

Натуральные числа $1, 2, 3, \dots$ используются для счёта (одна груша, две груши, три груши и т.д.) или для указания порядкового номера предмета среди ему подобных.

Натуральные числа принято записывать с помощью арабских цифр: $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$.

Рисунок 1.

Определение 1

Натуральные числа (или естественные числа) — числа, которые возникают естественным образом при подсчете чего-либо.

Пример 1

Натуральными будут числа: $3, 48, 157, 1089, 25556$.

Если выстроить все натуральные числа в порядке их возрастания, то получим натуральный ряд.

Для определения натуральных чисел существует два подхода:

  1. Числа, которые возникают при подсчете (нумерации) предметов (например, первый, второй и т.д.).

  2. Числа, которые используют для обозначения количества предметов (нет стула, один стул, два стула и т.д.).

При первом подходе натуральный ряд начинается с единицы, при втором — с нуля.

Математики не пришли к единому выводу считать ли ноль натуральным числом. В большинстве российских источников традиционным является первый подход. Второй подход широко используется в программировании (например, при индексации массивов, нумерации битов машинного кода и т.д.).

Замечание 2

К натуральным числам не относятся ни отрицательные, ни нецелые числа.

Определение 2

Множество всех натуральных чисел обозначается $N=\left\{1,\ 2,\ 3,\ 4,\ \dots ,\ n,\ \dots \right\}$ и характеризуется своей бесконечностью, т.к. для любого натурального числа $n$ существует натуральное число, которое будет большее $n$.

Пример 2

Какие из чисел являются натуральными?

\[-6;\ \ 5;\ \ 0,6;\ \ \ \frac{1}{2};\ \ \ \sqrt[3]{5};\ \ 38;\ \ \ -38;\ \ 12,5;\ \ 4.\]

Ответ: $5;\ \ 38;\ \ \ 4.$

При формулировке и доказательстве многих теорем арифметики натуральных чисел удобно использовать и ноль, поэтому при первом подходе применяется понятие расширенного множества натуральных чисел, которое содержит ноль и обозначается $N_0$ или $Z_0$.

Аксиомы Пеано для натуральных чисел

Множество $N$ будем называть множеством натуральных чисел, если зафиксирован некоторый элемент единица $1\in N$ и функция следования $S:N\to N$ так, что выполнены следующие условия:

  1. $1\in N$: единица является натуральным числом.

  2. Если $x\in N$, то $S\left(x\right)\in N$: Если число — натуральное, то следующее число за ним тоже натуральное}.

  3. $exists x\in N\ \left(S\left(x\right)=1\right)$: Не существует натурального числа, которое находится перед единицей}.

  4. Если $S\left(b\right)=a$ и $S\left(c\right)=a$, тогда $b=c$: Если натуральное число $a$ следует за числом $b$ и за числом $c$, то $b=c$.

  5. Аксиома индукции. Пусть $P\left(n\right)$ — некоторый одноместный предикат, который зависит от натурального числа $n$. Тогда:

Если $P\left(1\right)$ и $\forall n\left(P\left(n\right)\Longrightarrow P\left(S\left(n\right)\right)\right)$, то $\forall n\ P\left(n\right)$:

Если некоторое высказывание $P$ верно для $n=1$ и для любого $n$ из истинности $P\left(n\right)$ следует истинность $P\left(n+1\right)$, то $P\left(n\right)$ верно для любого натурального $n$.

Все аксиомы отражают представление о натуральном ряде и числовой линии.

Теоретико-множественное определение натуральных чисел (определение Фреге–Рассела)

По теории множеств единственным объектом конструирования любых математических систем является множество.

Таким образом, исходя из понятия множества натуральные числа вводятся по двум правилам:

  • $0=\emptyset $
  • $S\left(n\right)=n\cup \left\{n\right\}$
  • Заданные таким образом числа называются порядковыми или ординальными.

Описываются первые порядковые числа и натуральные числа, которые им соответствуют, следующим образом:

  • $0=\emptyset $
  • $1=\left\{0\right\}=\left\{\emptyset \right\}$
  • $2=\left\{0,\ \ 1\right\}=\left\{\emptyset ,\ \ \left\{\emptyset \right\}\right\}$
  • $3=\left\{0,\ \ 1,\ \ 2\right\}=\left\{\emptyset ,\ \ \left\{\emptyset \right\},\ \ \left\{\emptyset ,\ \ \left\{\emptyset \right\}\right\}\right\}$

Источник: https://spravochnick.ru/matematika/naturalnye_chisla/

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

Пример:

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.

Итак:

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Пример:

28+63=91

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик.

Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды.

Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Пример:

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Пример:

Вычитание натуральных чисел

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Пример:

74–18=56

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Пример:

21–21=0

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Пример:

38–0=38

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов.

Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10.

Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Пример:

Произведение натуральных чисел

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме.

При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают.

При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примеры:

Деление натуральных чисел

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Пример:

48:6=8

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него.

Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным.

Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Пример:

38:7

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3

Источник: https://spadilo.ru/naturalnye-chisla/

Натуральное число

Натуральное число определение

    Введение

  • 1 Определение
    • 1.1 Аксиомы Пеано
    • 1.2 Теоретико-множественное определение (Определение Фреге-Рассела)
  • 2 Ноль как натуральное число
  • 3 Операции над натуральными числами
    • 3.1 Теоретико-множественные определения
    • 3.2 Основные свойства
    • 3.3 Алгебраическая структура
  • Примечания

Натуральные числа можно использовать для счёта (одно яблоко, два яблока и т. п.).

Натуральные числа (естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел — числа, используемые при:

  • перечислении (нумеровании) предметов (первый, второй, третий, …);
  • обозначении количества предметов (нет предметов, один предмет, два предмета, …). Принят в трудах Бурбаки, где натуральные числа определяются как мощности конечных множеств.

Отрицательные и нецелые (рациональные, вещественные, …) числа натуральными не являются.

Множество всех натуральных чисел принято обозначать знаком . Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.

1.1. Аксиомы Пеано

Множество будем называть множеством натуральных чисел, если зафиксирован некоторый элемент (единица) и функция (функция следования) так, что выполнены следующие условия

  1. (1 является натуральным числом);
  2. Если , то (Число, следующее за натуральным, также является натуральным);
  3. (1 не следует ни за каким натуральным числом);
  4. Если S(b) = a и S(c) = a, тогда b = c (если натуральное число a непосредственно следует как за числом b, так и за числом c, то b = c);
  5. Аксиома индукции. Пусть P(n) — некоторый одноместный предикат, зависящий от параметра — натурального числа n. Тогда:

если P(1) и , то (Если некоторое высказывание P верно для n = 1 (база индукции) и для любого n при допущении, что верно P(n), верно и P(n + 1) (индукционное предположение), тоP(n) верно для любых натуральных n).

Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».

Принципиальным фактом является то, что эти аксиомы по сути однозначно определяют натуральные числа (категоричность системы аксиом Пеано). А именно, можно доказать (см.[1], а также краткое доказательство [2]), что если и  — две модели для системы аксиом Пеано, то они необходимо изоморфны, то есть существует биекция такая, что и для всех .

Поэтому, достаточно зафиксировать в качестве какую-либо одну конкретную модель множества натуральных чисел, например, ту, что описана ниже.

1.2. Теоретико-множественное определение (Определение Фреге-Рассела)

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

2. Ноль как натуральное число

Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах Пеано заменяют 1 на 0. В этом случае ноль считается натуральным числом. При определении через классы равномощных множеств 0 является натуральным числом по определению.

Специально отбрасывать его было бы неестественно. Кроме того, это значительно усложнило бы дальнейшее построение и применение теории, так как в большинстве конструкций ноль, как и пустое множество, не является чем-то выделенным.

Одним из преимуществ натурального нуля является то, что при этом образует полугруппу с единицей.

В русской литературе обычно ноль исключён из числа натуральных чисел , а множество натуральных чисел с нулём обозначается как . Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как , а без нуля как .

В международной математической литературе, с учётом сказанного выше и во избежание неоднозначностей, множество обычно называют множеством положительных целых чисел и обозначают . Множество зачастую называют множеством неотрицательных целых чисел и обозначают .

3. Операции над натуральными числами

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • Сложение. Слагаемое + Слагаемое = Сумма
  • Умножение. Множитель * Множитель = Произведение
  • Возведение в степеньab, где a — основание степени и b — показатель степени. Если основание и показатель натуральны, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

  • Вычитание. Уменьшаемое – Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
  • Деление. Делимое / Делитель = (Частное, Остаток). Частное p и остаток r от деления a на b определяются так: a = p * b + r, причём . Заметим, что именно последнее условие запрещает деление на ноль, так как иначе a можно представить в виде a = p * 0 + a, то есть можно было бы считать частным 0, а остатком = a.

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

3.1. Теоретико-множественные определения

Воспользуемся определением натуральных чисел как классов эквивалентности конечных множеств. Будем обозначать класс эквивалентности множества A относительно биекций как [A]. Тогда основные арифметические операции определяются следующим образом:

  • [A][B] = [AB]

где  — дизъюнктное объединение множеств,  — прямое произведение, AB — множество отображений из B в A. Можно показать, что полученные операции на классах введены корректно, то есть не зависят от выбора элементов классов, и совпадают с индуктивными определениями.

3.2. Основные свойства

  1. Коммутативность сложения.
  2. Коммутативность умножения.
  3. Ассоциативность сложения.
  4. Ассоциативность умножения.
  5. Дистрибутивность умножения относительно сложения.

3.3. Алгебраическая структура

Сложение превращает множество натуральных чисел в полугруппу с единицей, роль единицы выполняет 0.

Умножение также превращает множество натуральных чисел в полугруппу с единицей, при этом единичным элементом является 1.

С помощью замыкания относительно операций сложения-вычитания и умножения-деления получаются группы целых чисел и рациональных положительных чисел соответственно.

Примечания

  1. Феферман С. Числовые системы. Основания алгебры и анализа. — 1971. — 445 с.
  2. Доказательство единственности натуральных чисел – www.apronus.com/provenmath/naturalaxioms.htm.

скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 10.07.11 16:35:55
Похожие рефераты: Натуральное хозяйство, Натуральное хозяйство (агротехника), 109 (число), 111 (число), 112 (число), 113 (число), 114 (число), 115 (число), 116 (число).

Категории: Натуральные числа.

Текст доступен по лицензии Creative Commons Attribution-ShareA.

Источник: http://wreferat.baza-referat.ru/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE

Что такое натуральное число

Натуральное число определение
Определение

Натуральными числами называются числа, которые используются при счете или для указания порядкового номера предмета среди однородных предметов.

Например. Натуральными будут такие числа: $2,37,145,1059,24411$

Натуральные числа, записанные в порядке возрастания, образуют числовой ряд. Он начинается с наименьшего натурально числа 1.Множество всех натуральных чисел обозначают $N=\{1,2,3, \dots n, \ldots\}$. Оно бесконечно,так как не существует наибольшего натурального числа. Если к любому натуральному числу прибавить единицу, то получаем натуральное число,следующее за данным числом.

Пример

Задание. Какие из следующих чисел являются натуральными?

$$-89 ; 7 ; \frac{4}{3} ; 34 ; 2 ; 11 ; 3,2 ; \sqrt[3]{129} ; \sqrt{5}$$

Ответ. $7 ; 34 ; 2 ; 11$

На множестве натуральных чисел вводится две основные арифметические операции -сложение иумножение.Для обозначения этих операций используются соответственно символы ” + “ и” • “ (или ” × “).

Умножение натуральных чисел

Каждой упорядоченной паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число$r$, называемое их произведением. Произведение $r$ содержит стольких единиц, сколько их содержится в числе$n$, взятых столько раз, сколько единиц содержится в числе $m$. О числе$r$ говорят, что оно получено в результате умножения чисел $n$ и $m$, и пишут

$n \cdot m=r \quad $ или $ \quad n \times m=r$

Числа $n$ и$m$ называются множителями или сомножителями.

Операция умножения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n \cdot m=m \cdot n$
  2. Ассоциативность: $(n \cdot m) \cdot k=n \cdot(m \cdot k)$

Подробнее о умножении чисел читайте по ссылке.

Пример

Задание. Найти произведение чисел:

12$\cdot 3 \quad $ и $ \quad 7 \cdot 25 \cdot 4$

Решение. По определению операции умножения:

$$12 \cdot 3=12+12+12=36$$

Ко второму произведению применим свойство ассоциативности умножения:

$$7 \cdot 25 \cdot 4=7 \cdot(25 \cdot 4)=7 \cdot 100=700$$

Ответ. $12 \cdot 3=36 \quad;\quad 7 \cdot 25 \cdot 4=700$

Операция сложения и умножения натуральных чисел связаны законом дистрибутивности умножения относительно сложения:

$$(n+m) \cdot k=n \cdot k+m \cdot k$$

Сумма и произведение любых двух натуральных чисел всегда есть число натуральное, поэтому множество всех натуральных чиселзамкнуто относительно операций сложения и умножения.

Так же на множестве натуральных чисел можно ввести операциивычитания иделения, как операции обратные к операциямсложения и умножения соответственно. Но эти операции не будут однозначно определенны для любой пары натуральных чисел.

Свойство ассоциативности умножения натуральных чисел позволяет ввести понятие натуральной степени натурального числа:$n$-й степенью натурального числа $m$ называется натуральное число$k$, полученное в результате умножения числа $m$ самого на себя $n$ раз:

Для обозначения $n$-й степени числа $m$ обычно используется запись: $m{n}$, в котором число$m$ называется основанием степени, а число $n$ – показателем степени.

Пример

Задание. Найти значение выражения $2{5}$

Решение. По определению натуральной степени натурального числа это выражение можно записать следующим образом

$$2{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$$

Ответ. $2{5}=32$

Читать дальше: что такое рациональное число.

Источник: https://www.webmath.ru/poleznoe/formules_18_1.php

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.