Кислоты определение

Содержание

2.6. Характерные химические свойства кислот

Кислоты определение

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

КислородсодержащиеБескислородные
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH  и т.д.)HF, HCl, HBr, HI, H2S

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H+, а также замещаться на атомы металла:

одноосновныедвухосновныетрехосновные
HBr, HCl, HNO3, HNO2, HCOOH, CH3COOHH2SO4, H2SO3, H2CO3, H2SiO3H3PO4

3) Летучесть

Кислоты обладают различной способностью улетучиваться из водных растворов.

ЛетучиеНелетучие
H2S, HCl, CH3COOH, HCOOHH3PO4, H2SO4, высшие карбоновые кислоты

4) Растворимость

РастворимыеНерастворимые
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3,HNO2, H3PO4, H2CO3, CH3COOH, HCOOHH2SiO3, высшие карбоновые кислоты

5) Устойчивость

УстойчивыеНеустойчивые
H2SO4, H3PO4, HCl, HBr, HFH2CO3, H2SO3

6) Способность к диссоциации

хорошо диссоциирующие (сильные)малодиссоциирующие (слабые)
H2SO4, HCl, HBr, HI, HNO3, HClO4H2CO3, H2SO3, H2SiO3

7) Окисляющие свойства

слабые окислители(проявляют окислительные свойства за счет катионов водорода H+)сильные окислители(проявляют окислительные свойства за счет кислотообразующего элемента)
практически все кислоты кроме HNO3 и H2SO4 (конц.)HNO3 любой концентрации, H2SO4 (обязательно концентрированная)

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые).

При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации.

Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H+ + Cl—

либо в таком: HCl → H+ + Cl—

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать  в уравнении вместо знака  две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

CH3COOH  CH3COO— + H+

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H+ :

H3PO4  H+ + H2PO4—

H2PO4—  H+ + HPO42-

HPO42-  H+ + PO43-

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4— , которые, в свою очередь, диссоциируют лучше, чем ионы HPO42-. Связано такое явление с увеличением заряда кислотных остатков,  вследствие чего возрастает прочность связи между ними и положительными ионами H+.

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

H2SO4 2H+ + SO42-

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.

) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только  за счет катионов водорода.

Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

H2SO4(разб.) + Zn  ZnSO4 + H2

2HCl + Fe  FeCl2 + H2

Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после.

То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро.

Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с  основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

H2SO4 + ZnO ZnSO4 + H2O

6HNO3 + Fe2O3 2Fe(NO3)3 + 3H2O

H2SiO3 + FeO ≠

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH H2O + NaCl

3H2SO4 + 2Al(OH)3  Al2(SO4)3 + 6H2O

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

H2SO4 + Ba(NO3)2 BaSO4↓ + 2HNO3

CH3COOH + Na2SO3 CH3COONa + SO2↑ + H2O

HCOONa + HCl HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Так, например, они способны окислить медь, серебро и ртуть.

Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4  без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной  и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого  зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной  и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

4HCl + MnO2 MnCl2 + Cl2↑ + 2H2O

16HBr + 2KMnO4 2KBr + 2MnBr2 + 8H2O + 5Br2

14НI + K2Cr2O7 3I2↓ + 2Crl3 + 2KI + 7H2O

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

6HI + Fe2O3 2FeI2 + I2↓ + 3H2O

2HI + 2FeCl3 2FeCl2 + I2↓ + 2HCl

Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:

2H2S + SO2  3S↓+ 2H2O

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/harakternye-himicheskie-svojstva-kislot

Значение слова КИСЛОТА. Что такое КИСЛОТА?

Кислоты определение

  • КИСЛОТА́, -ы́, ж.1.Свойство по знач. прил. кислый. Обошли первый песчаный мыс и взяли наперерез протока —. Тут слышнее стал запах рыбы, к приторной сладости его прибавилось кислоты. Федин, Необыкновенное лето.2. (мн. кисло́ты, -ло́т). Химическое соединение, обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. Азотная кислота. Соляная кислота.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Кисло́ты — химические соединения, способные отдавать катион водорода (кислоты Брёнстеда) либо соединения, способные принимать электронную пару с образованием ковалентной связи (кислоты Льюиса).В быту и технике под кислотами обычно подразумеваются кислоты Брёнстеда, образующие в водных растворах избыток ионов гидроксония H3O+. Присутствие этих ионов обуславливает кислый вкус растворов кислот, способность менять окраску индикаторов и, в высоких концентрациях, раздражающее действие кислот. Подвижные атомы водорода кислот способны замещаться на атомы металлов с образованием солей, содержащих катионы металлов и анионы кислотного остатка.

Источник: Википедия

  • КИСЛОТА', ы́, мн. ло́ты, ж.1.Только ед.Отвлеч. сущ. к ки́слый, что-н. кислое (разг.). Я попробовал, чувствую: к. какая-то.2. Химическое соединение, обладающее кислым вкусом и окрашивающее синий лакмус в красный цвет (хим.). Серная к.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

Источник: Викисловарь

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: посылать — это что-то нейтральное, положительное или отрицательное?

Ассоциации к слову «кислота»

  • химия
  • лимон
  • кислый
  • ожог
  • кисло
  • (ещё…)

Предложения со словом «кислота»:

  • Купажированные квасы готовят на основе готового квасного концентрата с добавлением ароматизаторов, лимонной кислоты и прочих добавок.
  • Помимо этого, гидроксицитрат способствует обратному синтезу глюкозы из жирных кислот.
  • Эти квасы полезны для всех — ведь их насыщенность витаминами, минералами, органическими кислотами и другими веществами, которыми богаты фрукты и ягоды, огромна.
  • (все предложения)

азотная серная соляная уксусная лимонная …

(все определения)

Понятия со словом «кислота»

  • Кисло́ты — химические соединения , способные отдавать катион водорода (кислоты Брёнстеда), либо соединения, способные принимать электронную пару с образованием ковалентной связи (кислоты Льюиса).
  • Аскорби́новая кислота́ (от др.-греч. ἀ «не-» + лат. scorbutus «цинга», дословно противоскорбутный) — органическое соединение с формулой C6H8O6, является одним из основных веществ в человеческом рационе, которое необходимо для нормального функционирования соединительной и костной ткани. Выполняет биологические функции восстановителя и кофермента некоторых метаболических процессов, является антиоксидантом.
  • Нуклеи́новая кислота (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
  • Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из чётного числа атомов углерода (от 4 до 24, включая карбоксильный) и могут быть как насыщенными, так и ненасыщенными.
  • Никоти́новая кислота́ (ниацин, витамин PP, витамин B3) — витамин, участвующий во многих окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов в живых клетках, лекарственное средство.
  • (все понятия)

Дополнительно:

Источник: https://kartaslov.ru/%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0/%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%B0

Основные определения кислот и оснований

Кислоты определение

Многие реакции, протекающие без изменения степеней окисления элементов, относят к кислотно — основным равновесиям. Существует множество их классификаций, в зависимости от того, что понимают под кислотой или основанием. В таблице приведены наиболее распространенные определения кислот и оснований.

Рисунок 1. Основные определения кислот и оснований

Так как наиболее распространенный растворитель — вода, в качестве первого приближения чаще всего используется теория Аррениуса. Теория Бренстеда — Лоури позволяет количественно описать кислотно — основные равновесия.

Сложные гетеросоединения

Среди всех соединений вода, по своим кислотно — основным свойствам занимает промежуточное положение. Поэтому характер ее взаимодействий с другими веществами довольно разнообразен.

Так, при взаимодействии воды с оксидами щелочных металлов, образуются растворимые основания — щелочи. Они представляют собой гидроксиды металлов, которые хорошо растворяются в воде и полностью диссоциируют с образованием ионов.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

$Na_2O + H_2O + 151,5$ кДж $ > 2NaOH$

$NaOH + aq – 41,8$ кДж $ > [Na+]aq + [OH-]aq$

Символ $«aq»$ обозначает большое количество воды, в которой может раствориться $1$ моль $NaOH$ с образованием ионов, гидратированных молекулами воды.

Гидраты, образующиеся в результате взаимодействия оксидов неметаллов с водой, называют кислотами.

$SO_3 + H_2O – 132,2$ кДж $ > H_2SO_4$

Гидроксид при растворении в избытке воды гидратируется дальше, в результате чего диссоциирует на катионы водорода и анионы кислотного остатка:

$H_2SO_4+ aq – 92,5$кДж $ >2H+ (aq) + SO_4{2-}(aq)$

Кислотные свойства раствора будет определять концентрация ионов водорода в нем.

Определение 1

Кислота – это вещество, которое в процессе электролитической диссоциации при растворении в воде образует раствор, содержащий избыток ионов водорода.

Основание — это гидроксид, который в процессе электролитической диссоциации при растворении в воде образует раствор, содержащий избыток ионов гидроксила.

Амфотерность

Гидратация, приводящая к образованию кислот:

$ROH + aq > RO- (aq) + H+(aq)$,

характерна в тех случаях, когда связь $H-O$ в гидроксиде более полярна, чем связь $R-O$.

Если у гидоксида связь $R-O$ более полярна, чем связь $H-O$, то в процессе гидратации образуется основание:

$ROH + aq > R+ (aq) + OH-(aq)$

Гидроксид одновременно будет проявлять свойства и слабой кислоты и слабого основания, если величины полярностей обеих связей в молекуле $ROH$ сравнимы по величине. Это свойство электролитов называется амфотерность, а вещество проявляющее данное свойство — амфотерное вещество.

Амфотерный гидроксид в щелочной среде ведет себя как кислота:

$ROH + OH-(aq) > RO- (aq) + H_2O$,

а в кислой среде ведет себя как основание:

$ROH + H+(aq) > R+ + H_2O$.

Пример 1

Гидроксид алюминия $AlCl_3$ является слабоосновным веществом. Он растворяется как в растворах кислот, так и в растворах щелочей:

$Al(OH)3 + 3H+(aq) – 106$ кДж $ > Al{3+}(aq) + 3H_2O$,

$H_3AlO_3 + OH-(aq) + 19,7$ кДж $ > AlO_{2-} (aq) + H_2O$

У оксидов одного и того же элемента можно наблюдать изменение кислотных и основных свойств. Так у металлов низшие кислородные формы являются основными, высшие — кислотными, а промежуточные — амфотерными.

Пример 2

Оксиды марганца имеют следующие формы:

  • основный оксид $MnO$;
  • амфотерные оксиды $Mn_2O_3$, $MnO_2$;
  • кислотный оксид $MnO_3$, $Mn_2O_7$.

Основный оксид может реагировать с кислотой, а кислотный — с основанием.

$MnO + 2H+(aq) – 119,6$ кДж $ > Mn{2+}(aq) + 3H_2O$,

$0,5Mn_2O_7 + OH-(aq) – 67,2$ кДж $ > MnO_{4- }(aq) + 0,5H_2O$

Если подобное семейство образует неметалл, то прослеживается та же закономерность.

Классификация кислот и оснований по основности и по кислотности

В зависимости от того, сколько атомов водорода в кислоте способно заместиться на металл, кислоты подразделяют на:

  • одноосновные ($HNO_3$);
  • двухосновные ($H_2SO_4$);
  • трехосновные ($H_3PO_4$);
  • четырехосновные ($H_4P_2O_7$).

Если основание содержит более одной гидроксильной группы, оно называется многокислотным. Различают следующие виды оснований:

  • однокислотные ($NaOH$);
  • двухкислотные ($Ca(OH)_2$);
  • трехкислотные ($Al(OH)_3$).

Источник: https://spravochnick.ru/himiya/kisloty_i_osnovaniya/osnovnye_opredeleniya_kislot_i_osnovaniy/

Кислоты: примеры, таблица. Свойства кислот

Кислоты определение

Кислоты – это такие химические соединения, которые способны отдавать электрически заряженный ион (катион) водорода, а также принимать два взаимодействущих электрона, вследствие чего образуется ковалентная связь.

В данной статье мы рассмотрим основные кислоты, которые изучают в средних классах общеобразовательных школ, а также узнаем множество интересных фактов о самых разных кислотах. Приступим.

Кислоты: виды

В химии существует множество самых разнообразных кислот, которые имеют самые разные свойства.

Химики различают кислоты по содержанию в составе кислорода, по летучести, по растворимости в воде, силе, устойчивости, принадлежности к органическому или неорганическому классу химических соединений.

В данной статье мы рассмотрим таблицу, в которой представлены самые известные кислоты. Таблица поможет запомнить название кислоты и ее химическую формулу.

Химическая формулаНазвание кислоты
H2SСероводородная
H2SO4Серная
HNO3Азотная
HNO2Азотистая
HFПлавиковая
HClСоляная
H3PO4Фосфорная
H2CO3Угольная

Итак, все наглядно видно. В данной таблице представлены самые известные в химической промышленности кислоты. Таблица поможет намного быстрее запомнить названия и формулы.

Сероводородная кислота

H2S – это сероводородная кислота. Ее особенность заключается в том, что она еще и является газом. Сероводород очень плохо растоворяется в воде, а также взаимодействует с очень многими металлами. Сероводородная кислота относится к группе “слабые кислоты”, примеры которых мы рассмотрим в данной статье.

H2S имеет немного сладковатый вкус, а также очень резкий запах тухлых яиц. В природе ее можно встретить в природном или вулканическом газах, а также она выделяется при гниении белка.

Свойства кислот очень разнообразны, даже если кислота незаменима в промышленности, то может быть очень неполезна для здоровья человека. Данная кислота очень токсична для человека.

При вдыхании небольшого количество сероводорода у человека пробуждается головная боль, начинается сильная тошнота и головокружение.

Если же человек вдохнет большое количество H2S, то это может привести к судорогам, коме или даже мгновенной смерти.

Серная кислота

H2SO4 – это сильная серная кислота, с которой дети знакомятся на уроках химии еще в 8-м классе. Химические кислоты, такие как серная, являются очень сильными окислителями. H2SO4 действует как окислитель на очень многие металлы, а также основные оксиды.

H2SO4 при попадании на кожу или одежду вызывает химические ожоги, однако она не так токсична, как сероводород.

Азотная кислота

В нашем мире очень важны сильные кислоты. Примеры таких кислот: HCl, H2SO4, HBr, HNO3. HNO3 – это всем известная азотная кислота. Она нашла широкое применение в промышленности, а также в сельском хозяйстве. Ее используют для изготовления различных удобрений, в ювелирном деле, при печати фотографий, в производстве лекарственных препаратов и красителей, а также в военной промышленности.

Такие химические кислоты, как азотная, являются очень вредными для организма. Пары HNO3 оставляют язвы, вызывают острые воспаления и раздражения дыхательных путей.

Азотистая кислота

Азотистую кислоту очень часто путают с азотной, но разница между ними есть. Дело в том, что азотистая кислота намного слабее азотной, у нее совершенно другие свойства и действие на организм человека.

HNO2 нашла широкое применение в химической промышленности.

Плавиковая кислота

Плавиковая кислота (или фтороводород) – это раствор H2O c HF. Формула кислоты – HF. Плавиковая кислота очень активно используется в алюминиевой промышленности. Ею растворяют силикаты, травят кремний, силикатное стекло.

Фтороводород является очень вредным для организма человека, в зависимости от его концентрации может быть легким наркотиком. При попадании на кожу сначала никаких изменений, но уже через несколько минут может появиться резкая боль и химический ожог. Плавиковая кислота очень вредна для окружающего мира.

Соляная кислота

HCl – это хлористый водород, является сильной кислотой. Хлористый водород сохраняет свойства кислот, относящихся к группе сильных. На вид кислота прозрачна и бесцветна, а на воздухе дымится. Хлористый водород широко применяется в металлургической и пищевой промышленностях.

Данная кислота вызывает химические ожоги, но особо опасно ее попадание в глаза.

Фосфорная кислота

Фосфорная кислота (H3PO4) – это по своим свойствам слабая кислота. Но даже слабые кислоты могут иметь свойства сильных. Например, H3PO4 используют в промышленности для восстановления железа из ржавчины. Помимо этого, форсфорная (или ортофосфорная) кислота широко используется в сельском хозяйстве – из нее изготавливают множество разнообразных удобрений.

Свойства кислот очень схожи – практически каждая из них очень вредна для организма человека, H3PO4 не является исключением. Например, эта кислота также вызывает сильные химические ожоги, кровотечения из носа, а также крошение зубов.

Угольная кислота

H2CO3 – слабая кислота. Ее получают при растворении CO2 (углекислый газ) в H2O (вода). Угольную кислоту используют в биологии и биохимии.

Плотность различных кислот

Плотность кислот занимает важное место в теоретической и практической частях химии.

Благодаря знанию плотности можно определить концентрацию той или иной кислоты, решить расчетные химические задачи и добавить правильное количество кислоты для совершения реакции.

Плотность любой кислоты меняется в зависимости от концентрации. Например, чем больше процент концентрации, тем больше и плотность.

Общие свойства кислот

Абсолютно все кислоты являются сложными веществами (то есть состоят из нескольких элементов таблицы Менделеева), при этом обязательно включают в свой состав H (водород). Далее мы рассмотрим химические свойства кислот, которые являются общими:

  1. Все кислородсодержащие кислоты (в формуле которых присутствует O) при разложении образуют воду, а также кислотный оксид. А бескислородные при этом разлагаются на простые вещества (например, 2HF разлагается на F2 и H2).
  2. Кислоты-окислители взаимодействуют со всеми металлами в ряду активности металлов (только с теми, которые расположены слева от H).
  3. Взаимодействуют с различными солями, но только с теми, которые были образованы еще более слабой кислотой.

По своим физическим свойствам кислоты резко отличаются друг от друга. Ведь они могут иметь запах и не иметь его, а также быть в самых разных агрегатных состояниях: жидких, газообразных и даже твердых. Очень интересны для изучения твердые кислоты. Примеры таких кислот: C2H204 и H3BO3.

Концентрация

Концентрацией называют величину, которая определяет количественный состав любого раствора. Например, химикам часто необходимо определить то, сколько в разбавленной кислоте H2SO4 находится чистой серной кислоты.

Для этого они наливают небольшое количество разбавленной кислоты в мерный стакан, взвешивают и определяют концентрацию по таблице плотности.

Концентрация кислот узко взаимосвязана с плотностью, часто на определение концетрации встречаются расчетные задачи, где нужно определить процентное количество чистой кислоты в растворе.

Одной из самых популярных классификаций является разделение всех кислот на одноосновные, двухосновные и, соответственно, трехосновные кислоты. Примеры одноосновных кислот: HNO3 (азотная), HCl (хлороводородная), HF (фтороводородная) и другие.

Данные кислоты называются одноосновными, так как в их составе присутствует всего лишь один атом H. Таких кислот множество, абсолютно каждую запомнить невозможно. Нужно лишь запомнить, что кислоты классифицируют и по количеству атомов H в их составе. Аналогично определяются и двухосновные кислоты.

Примеры: H2SO4 (серная), H2S (сероводородная), H2CO3 (угольная) и другие. Трехосновные: H3PO4 (фосфорная).

Основная классификация кислот

Одной из самых популярных классификаций кислот является разделение их на кислородосодержащие и бескислородные. Как запомнить, не зная химической формулы вещества, что это кислота кислородосодержащая?

У всех бескислородных кислот в составе отсутствует важный элемент O – кислород, но зато в составе есть H. Поэтому к их названию всегда приписывается слово “водородная”. HCl – это хлороводородная кислота, a H2S – сероводородная.

Но и по названиям кислосодержащих кислот можно написать формулу. Например, если число атомов O в веществе – 4 или 3, то к названию всегда прибавляется суффикс -н-, а также окончание -ая-:

  • H2SO4 – серная (число атомов – 4);
  • H2SiO3 – кремниевая (число атомов – 3).

Если же в веществе меньше трех атомов кислорода или три, то в названии используется суффикс -ист-:

  • HNO2 – азотистая;
  • H2SO3 – сернистая.

Общие свойства

Все кислоты имеют вкус кислый и часто немного металлический. Но есть и другие схожие свойства, которые мы сейчас рассмотрим.

Есть такие вещества, которые называются индикаторами. Индикаторы изменяют свой цвет, или же цвет остается, но меняется его оттенок. Это происходит в то время, когда на индикаторы действуют какие-то другие вещества, например кислоты.

Примером изменения цвета может служить такой привычный многим продукт, как чай, и лимонная кислота. Когда в чай бросают лимон, то чай постепенно начинает заметно светлеть. Это происходит из-за того, что в лимоне содержится лимонная кислота.

Существуют и другие примеры. Лакмус, который в нейтральной среде имеет сиреневый цвет, при добавлении соляной кислоты становится красным.

При взаимодействии кислот с металлами, находящимися в ряду напряженности до водорода, выделяются пузырьки газа – H. Однако если в пробирку с кислотой поместить металл, который находится в ряду напряженности после H, то никакой реакции не произойдет, выделения газа не будет. Так, медь, серебро, ртуть, платина и золото с кислотами реагировать не будут.

В данной статье мы рассмотрели самые известные химические кислоты, а также их главные свойства и различия.

Источник: https://FB.ru/article/238038/kislotyi-primeryi-tablitsa-svoystva-kislot

Кислоты и основания

Кислоты определение

Из нашего повседневного опыта мы знаем, что некоторые вещества обладают высококоррозионными свойствами. Например, если кислота из аккумулятора вашей машины попадет на одежду, она сразу же ее проест. Иногда мы используем аммиак и другие вещества для домашней уборки. Эти коррозионные вещества известны химикам как кислоты и основания. На поверхностном уровне их различить совсем не сложно.

Кислоты кислые на вкус и окрашивают лакмусовую бумажку в красный цвет, щелочи же мыльные на ощупь и окрашивают лакмусовую бумажку в синий цвет. Однако химики редко довольствуются такого рода феноменологическими определениями. Они ищут ответ на вопрос «Что делает вещество кислотой или основанием на молекулярном уровне?». Вот уже больше века химики бьются над определением кислот и оснований.

Первая попытка определить понятие кислоты восходит к 1778 году. Антуан Лавуазье смог объяснить, что именно происходит при горении, опровергнув бытовавшую до того теорию о флогистоне.

Содержащийся в воздухе газ, который соединяется с веществами, когда они горят, он назвал кислородом — от греческого «производящий кислоту», поскольку он считал (как потом оказалось, ошибочно), что все кислоты содержат кислород.

Определение Аррениуса

Современный подход к этой проблеме впервые сформулировал шведский химик Сванте Аррениус (Svante Arrhenius, 1859–1927).

Его определение, выдвинутое в 1877 году, было очень простым: если некоторое вещество при растворении в воде высвобождает ион водорода (то есть протон, Н+), значит это кислота. Если же при растворении в воде высвобождается гидроксид-ион (ОН–), то это основание.

Согласно этому определению, аккумуляторная кислота, представляющая собой водный раствор серной кислоты (H2SO4), является кислотой, потому что атомы водорода серной кислоты в растворе становятся ионами водорода.

Соответственно, гидроксид натрия (NaOH) является основанием, так как в воде он высвобождает гидроксид-ион. Это определение объясняет, почему кислоты и основания нейтрализуют друг друга. Когда гидроксид-ион встречается с ионом водорода, они соединяются с образованием H2O, обычной воды.

Между прочим, Аррениус активно участвовал в дискуссии о внеземном разуме (см. Парадокс Ферми). Он был сторонником теории панспермии — гипотезы о том, что жизнь с планеты на планету могут переносить микроорганизмы, перемещающиеся через космос, а значит, достаточно было жизни развиться лишь однажды, а не на каждой планете, где она есть.

На смену этой гипотезе пришла теория направленной панспермии, в соответствии с которой где-то в Галактике существует цивилизация, которая рассылает зародыши жизни с целью заселения подходящих планет.

Однако все эти теории только отодвигают решение проблемы происхождения жизни, потому что всё равно остается вопрос, как жизнь зародилась в самом первом месте.

Определение Брёнстеда—Лаури

Определение Аррениуса довольно точное, но область его применения ограниченна — оно годится только для водных растворов (веществ, растворенных в воде).

Вот пример реакции, на которую не распространяется определение Аррениуса: если вы поместите рядом сосуды с соляной кислотой (HCl) и аммиаком (NH3), вы увидите белый дымок над сосудами.

Пары аммиака и соляной кислоты смешиваются в воздухе над сосудами, и происходит химическая реакция

    NH3 + HCl → NH4Cl,

в которой кислота и основание соединяются с образованием хлорида аммония. Поскольку в этой реакции не участвует вода, определение Аррениуса здесь просто неприменимо.

В 1923 году датский химик Йоханнес Николаус Брёнстед (Johannes Nicolaus Brønsted, 1879–1947) и британский химик Томас Мартин Лаури (Thomas Martin Lowry, 1874–1936) предложили новое определение.

В соответствии с ним кислота представляет собой молекулу или ион, способные отдавать протон (то есть ион водорода, H+), а основание представляет собой молекулу или ион, способные принимать протон.

Если рассматриваемая реакция протекает в водной среде, это определение по сути то же, что и определение, предложенное Аррениусом, однако оно распространяется также на реакции, протекающие в отсутствие воды, такие как образование хлорида аммония, описанное выше.

Определение Льюиса

Наконец, последнее обобщение сделало определение кислот и оснований не зависящим не только от присутствия воды, но и от образования протонов. Его выдвинул в 1923 году американский химик Гилберт Ньютон Льюис (Gilbert Newton Lewis, 1875–1946).

Это определение основано на том, каким способом образуются химические связи в химических реакциях между кислотами и основаниями, а не на том, присоединяются или отдаются протоны.

По Льюису, кислота — это химическое соединение, способное принимать электронную пару с последующим образованием ковалентной связи, а основание — это соединение, способное отдавать электронную пару.

Определение Льюиса включает в себя оба более ранних определения, а также объясняет те реакции, в которых не участвует водород.

Например, когда диоксид серы реагирует с ионом кислорода с образованием серного ангидрида (эта реакция играет немаловажную роль в образовании кислотных дождей), ион кислорода отдает два электрона для образования ковалентной связи — иными словами, ведет себя как основание, в то время как диоксид серы принимает электроны и, следовательно, ведет себя как кислота. Эта реакция, протекающая без протона и без воды, подходит под определение Льюиса, но не подходит ни под одно из предшествующих определений.

Показатель pH: измерение кислотности

Для водных растворов широко используется система определения концентрации кислоты или основания, которая лучше всего может быть объяснена в терминах теории Брёнстеда—Лаури.

В чистой воде в каждый момент времени какие-то молекулы H2O диссоциируют на ионы водорода (H+) и гидроксид-ионы (OH–), и одновременно с этим какие-то соседние ионы H+ и OH– соединяются с образованием молекул воды. Таким образом, в воде всегда присутствуют ионы водорода (протоны). Молярная концентрация (см.

Закон Авогадро) водорода в чистой воде составляет 10–7 моль на литр. Это означает, что одна молекула H2O из каждых 10 миллионов находится в форме ионов.

Условились считать, что водородный показатель pH (сокр. от англ. «power of hydrogen» — «степень водорода») чистой воды равен 7 — это математический показатель степени из выражения 10–7, взятый с положительным знаком. Мы можем повысить концентрацию ионов водорода в воде, добавив кислоту.

Например, если мы добавим в чистую воду соляную кислоту (HCl), концентрация ионов водорода возрастет. Если мы достигнем точки, в которой молярная концентрация составляет 10–1 моль на литр, мы получим примерное значение кислотности желудочного сока. pH этого раствора составит 1.

Таким образом, pH ниже 7 характеризует кислоту, и чем меньше значение pH, тем сильнее кислота.

Подобным образом можно понизить концентрацию ионов водорода в чистой воде, добавив основание (ионы OH– основания будут реагировать с ионами H+ с образованием молекул воды). Так, у аммиака, применяемого в домашнем хозяйстве, молярная концентрация ионов водорода составляет всего 10–11 моль на литр, и, следовательно, pH равен 11. А поскольку pH больше 7, это основание.

Источник: https://elementy.ru/trefil/54/Kisloty_i_osnovaniya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.