Как найти область значения функции

Содержание

Как найти область значения функции

Как найти область значения функции

Функция — одно из важнейших математических понятий.

Определение: Если каждому числу из некоторого множества x поставлено в соответствие единственное число y, то говорят, что на этом множестве задана функция y(x). При этом x называют независимой переменной или аргументом, а y — зависимой переменной или значением функции или простофункцией.

Говорят также, что переменная y является функцией от переменной x.

Обозначив соответствие некоторой буквой, например f, удобно писать: y=f (x), то есть, значение y получается из аргумента x с помощью соответствия f. (Читают: y равно f от x.) Символом f (x) обозначают значение функции, соответствующее значению аргумента, равному x.

Пример 1 Пусть функция задается формулой y=2×2–6. Тогда можно записать, что f(x)=2×2–6. Найдем значения функции для значений х, равных, например, 1; 2,5;–3; т. е. найдем f(1), f(2,5), f(–3):

f(1)=2•12–6=–4; f(2,5)=2•2,52–6=6,5;

f(–3)=2•(–3)2–6= 12.

Заметим, что в записи вида y=f (x) вместо f употребляют и другие буквы: g, и т. п.

Определение: Область определения функции — это все значения x, при которых существует функция.

Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл.

Другими словами, область определения функции, заданной формулой, является все значения аргумента, за исключением тех, которые приводят к действиям, которые мы не можем выполнить. На данный момент мы знаем только два таких действия. Мы не можем делить на нуль и не можем извлечь квадратный корень из отрицательного числа.

Определение: Все значения, которые принимает зависимая переменная образуют область значения функции.

Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания.

Например, зависимость длины l железного стержня от температуры нагревания t выражается формулой , где l0 начальная длина стержня, а —коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях t.

Однако, областью определения функцииl=g(t) является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.

Пример.

Укажите область значений функции y = arcsinx.

Решение.

Областью определения арксинуса является отрезок [-1; 1]. Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1), то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1, а наибольшее при x = 1.

Мы получили область значений функции арксинуса .

Найдите множество значений функции на отрезке [1; 4].

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку [1; 4]:

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является интервал .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) на открытых интервалах (a; b), .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем односторонние пределы на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах открытого интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

studopedia.ru

Область значений функции

Область значений (или множество значений) функции — множество, состоящее из всех значений, которые принимает функция[1][2][3].

Определение

Пусть на множестве X {\displaystyle X} задана функция f {\displaystyle f} , которая отображает множество X {\displaystyle X} в Y {\displaystyle Y} , то есть: f : X → Y {\displaystyle f:X\to Y} .

Тогда областью (или множеством) значений функции f {\displaystyle f} называется совокупность всех её значений, которая является подмножеством множества Y {\displaystyle Y} и обозначается f ( X ) {\displaystyle f(X)} :

f ( X ) = y = f ( x ) , x ∈ X {\displaystyle f(X)=\\,y=f(x),\,x\in X\} .

Множество значений функции f {\displaystyle f} обозначается также символами E ( f ) {\displaystyle E(f)} , R ( f ) {\displaystyle R(f)} или r a n f {\displaystyle \mathrm {ran} \,f} (от англ. range).

Терминология

В некоторых источниках различаются понятия области значений и множества значений функции. При этом областью значений функции называют её кодомен, то есть множество Y {\displaystyle Y} в обозначении функции f : X → Y {\displaystyle f:X\to Y} [4], сохраняя термин множество значений для обозначения совокупности всех значений функции f {\displaystyle f} .

Множество значений f ( X ) {\displaystyle f(X)} называется также образом множества X {\displaystyle X} при отображении f {\displaystyle f} .

Иногда множество значений функции называют множеством всех значений или областью изменения функции[3].

ru.wikipedia.org

Как найти область определения функции и область значения??? приведите пример и опишите подробнее пожалуйста

Маря

Каждая функция содержит два типа переменных: независимую переменную и зависимую переменную. Например, в функции y = f(x) = 2x + y «х» является независимой переменной, а «у» – зависимой переменной. Область определения функции – это множество чисел, на котором задается функция (другими словами, это те значения «х», которые можно подставить в данное уравнение).

Область значений функции – все значения, которые принимает функция в ее области определения (другими словами, это те значения «у», которые вы получаете при подста Если функция задана дробным выражением, найдите корни выражения, стоящего в знаменателе. Для этого приравняйте выражение, стоящее в знаменателе, к нулю и найдите «х».

1,Пример: дана функция е (х) = х + 5 / х – 2. Эта функция задана дробным выражением. Найдите корни выражения в знаменателе: х – 2 = 0; х = 2.новке всех возможных значений «х»). 2. Запишите область определения функции. После нахождения корней выражения в знаменателе запишите область определения функции в математической форме.

В нашем примере знаменатель равен 0 при х = 2, следовательно х не может принимать значение 2 (так как на 0 делить нельзя). Область определения запишется в следующем виде: (-∞; 2)U(2; +∞). Читается так: от минус бесконечности до двух и от двух до плюс бесконечности. 3.Нарисуйте координатную плоскость: проведите ось Х (горизонтально) и ось Y (вертикально). 4.

На осях координат нанесите числовые отметки (через равные промежутки). 5.Найдите точки графика. Для этого подставьте в данную функцию значения «х» (из области определения функции) и найдите значения «у». В нашем примере подставьте любые значения «х», кроме 2, так как 2 исключена из области определения. 6.Отложите точки на координатной плоскости.

Затем соедините их плавной линией. 7. Найдите область значений функции. Для этого на координатной плоскости найдите такую горизонтальную прямую, которая не пересекается с графиком функции. Точка пересечения этой прямой и оси Y будет исключена из области значений функции. В нашем примере прямая, заданная функцией у = 1, не пересекает график исходной функции.

Следовательно «у» не принимает значение 1 и оно исключается из области значений функции. Математически область значений записывается так: (-∞,1)U(1,+∞)

Читается так: от минус бесконечности до единицы и от единицы до плюс бесконечности.

Лира

Область определения функции это то множество значений, которые может принимать аргумент функции. Например, для y(x)=x/x-1 ООФ будет интервал от минус бесконечности до 1 и от 1 до плюс бесконечности (х не равно 1). Область значения функции это то множество значений, которое может принимать функция. Например, для y(x)=sin(x) ОЗФ это отрезок от -1 до 1.

Что такое область значения функции? мне нужно определение

Катя

Множеством значений функции y = f(x) на интервале X называют множество всех значений функции, которые она принимает при переборе всех .

Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения . Область значений функции обозначают как E(f). Область значений функции и множество значений функции – это не одно и то же.

Эти понятия будем считать эквивалентными, если интервал X при нахождении множества значений функции y = f(x) совпадает с областью определения функции.

Не путайте также область значений функции с областью допустимых значений функции (ОДЗ) . Область допустимых значений функции – это есть область определения функции.

Как найти область значений/изменений функции?

у=x2-4x+7 у=8x-x2-10

мб это и простейшее уравнение…но чтоөто для меня не доходит как решить…=Ь

Naumenko

области определения и значений функций отдельно решение квадратных уравнений отдельно: http://www.bymath.net/studyguide/alg/sec/alg21.html ссылка на справочный сайт по элементарной математике. выпишите формулы и решайте, аккуратно считая. решите пару сотен уравнений и будете знатоком этого дела.

Успеха!

Rideamus com

Область значений, множество значений, область изменения это суть одно и то же. Другими словами, каким может быть у, зависимая переменная. У тебя две параболы, первая ветви вверх, вторая – вниз. Т. е.

область значений первой будут все у от вершины и до бесконечности, второй – от минус бесконечности и до вершины.

Осталось найти вершину 1) x=-b/(2a)=4/2=2 y=22-4*2+7=3 E(y)=[3;+oo) 2) x=-b/(2a)=-8/(2*(-1))=4 y=8*4-42-10=32-16-10=6

E(y)=(-oo;6]

Источник: https://zna4enie.ru/opredelenie/kak-najti-oblast-znachenija-funkcii.html

Как найти область значения функции 9 класс примеры | Помощь школьнику

Как найти область значения функции

Сумма двух чисел равна 25,а их произведение равно 144. найдите эти числа. Реклама. Пусть первое число а и второе b тогда a+b=25 ab=144 a=144/b 144/b+b=25 (144+b2)/b=25 144+b2-25b=0 b1=9 b2=16 a=16 если b=9 a=9 если b=16. Подставляем любые числа, что бы их сумма равнялась 25 13+12.

Функция: область определения и область значений функций

Функция-это модель. Определим X, как множество значений независимой переменной // независимая — значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т. е. для каждого х есть один у.

Из определения следует, что существует два понятия — независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

1. Независимая — это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

2. у=х2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

4. D (у)= [0; +∞)// мн-во неотрицат. чисел

Зависимая переменная (кот. мы обозначаем у ) имеет название значение функции.

Область значения функции

Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f) или E (y).

Рассмотрим Е (у) для 1.,2.,3.,4.

1. Е (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. Е (у)= [0; +∞)// мн-во неотрицат. чисел

4. Е (у)= [0; +∞)// мн-во неотрицат. чисел

Рассмотрим примеры подробнее

1) Постановка задачи. Найти функции у= 4х/(3+х)

1. Найдем D (у)//т. е. какие значения может принимать х. для этого найдем ОДЗ(область допустимых значений дроби)

Значит D (у) данной функции ( ∞; 3) и (3;+∞)// всё множество действительных чисел, кроме 3.

2. Найдем Е (у)//т. е. какие значения может принимать у, при всех возможных х

Решаем уравнение вида 4х/(3+х)=А, где А є Е (у)

Значит Е (у) данной функции ( ∞; 4) и (4;+∞)// всё множество действительных чисел, кроме 4.

2) Постановка задачи. Найти D (у)и Е (у) функции, изображенной на графике

Область определения(значения х) смотрим по оси х — это промежуток [ 4; 7],

Областью значения(значения у) смотрим по оси у — это промежуток [ 4; 4].

Нужна помощь в учебе?

Все неприличные комментарии будут удаляться.

Область значений функции (множество значений функции). Необходимые понятия и примеры нахождения

Многие задачи приводят нас к поиску множества значений функции на некотором отрезке или на всей области определения. К таким задачам можно отнести различные оценки выражений, решение неравенств.

В этой статье дадим определение области значений функции, рассмотрим методы ее нахождения и подробно разберем решение примеров от простых к более сложным. Весь материал снабдим графическими иллюстрациями для наглядности. Так что эта статья является развернутым ответом на вопрос как находить область значений функции.

Область значений функции обозначают как E(f) .

Область значений функции и множество значений функции — это не одно и то же. Эти понятия будем считать эквивалентными, если интервал X при нахождении множества значений функции y = f(x) совпадает с областью определения функции.

Не путайте также область значений функции с областью допустимых значений (ОДЗ) переменной x для выражения, находящегося в правой части равенства y=f(x) . Область допустимых значений переменной x для выражения f(x) – это есть область определения функции y=f(x) .

На рисунке приведены несколько примеров.

Графики функций показаны жирными синими линиями, тонкие красные линии – это асимптоты, рыжими точками и линиями на оси Оy изображена область значений соответствующей функции.

Как видите, область значений функции получается, если спроецировать график функции на ось ординат. Она может быть одним единственным числом (первый случай), множеством чисел (второй случай), отрезком (третий случай), интервалом (четвертый случай), открытым лучом (пятый случай), объединением числовых промежутков (шестой случай) и т. п.

Так что же нужно делать для нахождения области значений функции.

Начнем с самого простого случая: покажем как определять множество значений непрерывной функции y = f(x) на отрезке [a; b] .

Для примера найдем область значений функции арксинуса.

Укажите область значений функции y = arcsinx.

Областью определения арксинуса является отрезок [-1; 1] . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку [1; 4] :

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем односторонние пределы на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2) :

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

Выясним поведение функции при x стремящемся к -2 справа и при x стремящемся к 2 слева, то есть, найдем односторонние пределы:

Найдите область значений функции натурального логарифма y = lnx.

Мы видим, что при изменении x от нуля к плюс бесконечности значения функции возрастают от минус бесконечности к плюс бесконечности. Следовательно, областью значений функции натурального логарифма является все множество действительных чисел.

Эта функция определена для всех действительных значений x. Определим точки экстремума, а также промежутки возрастания и убывания функции.

Посмотрим на поведение функции на бесконечности:

Таким образом, на бесконечности значения функции асимптотически приближаются к нулю.

Мы выяснили, что при изменении аргумента от минус бесконечности к нулю (точке максимума) значения функции возрастают от нуля до девяти (до максимума функции), а при изменении x от нуля до плюс бесконечности значения функции убывают от девяти до нуля.

Посмотрите на схематический рисунок.

Пусть область определения функции y = f(x) представляет собой объединение нескольких промежутков. При нахождении области значений такой функции определяются множества значений на каждом промежутке и берется их объединение.

На этом промежутке функция тоже убывает.

Отдельно следует остановиться на периодических функциях. Область значений периодических функций совпадает с множеством значений на промежутке, отвечающем периоду этой функции.

Найдите область значений функции синуса y = sinx.

Вычисляем значения функции в этих точках и на границах отрезка, выбираем наименьшее и наибольшее значение:

В разделе основные элементарные функции, их свойства и графики Вы можете посмотреть области значений степенной, показательной, логарифмической функции, тригонометрических и обратных тригонометрических функций. Рассмотренная выше теория позволяет проверить приведенные области значений основных элементарных функций. Рекомендуем запомнить эти данные, так как они достаточно часто используются.

Знание областей значений основных элементарных функций позволяет находить области значений функций, полученных из основных элементарных с помощью геометрических преобразований графиков.

Приведем решение еще одного примера, но без пояснений (они не требуются, так как полностью аналогичны).

Для полноты картины следует поговорить о нахождении области значений функции, которая не является непрерывной на области определения.

В этом случае, область определения разбиваем точками разрыва на промежутки, и находим множества значений на каждом из них.

Объединив полученные множества значений, получим область значений исходной функции. Рекомендуем вспомнить классификацию точек разрыва функции.

Функция определена для всех действительных значений x. Исследуем функцию на непрерывность в точках x = -3 и x = 3 :

Следовательно, в точке x = 3 разрыв второго рода. При стремлении к 3 слева значения функции стремятся к минус единице, а при стремлении x к 3 справа значения функции стремятся к плюс бесконечности.

Функция определена для всех действительных значений аргумента. Выясним промежутки возрастания и убывания функции.

Производная обращается в ноль при x=-1 и x=3 . Отметим эти точки на числовой оси и определим знаки производной на полученных интервалах.

Вычислим соответствующие минимум и максимум функции:

Проверим поведение функции на бесконечности:

Второй предел вычисляли по правилу Лопиталя.

Сделаем схематичный чертеж.

Источник: https://poiskvstavropole.ru/2018/01/25/kak-najti-oblast-znacheniya-funkcii-9-klass-primery/

Как найти область определения функции

Как найти область значения функции

На уроке о понятии функции мы узнали, что существует X – множество, на котором формула, которой задана функция, имеет смысл.

В математическом анализе это множество часто обозначают как D (область определения функции).

В свою очередь множество Y обозначают как E (область значений функции) и при этом D и E называют подмножествами R (множества действительных чисел).

Если функция задана формулой, то при отсутствии особых оговорок областью её определения считается наибольшее множество, на котором эта формула имеет смысл, то есть наибольшее множество значений аргумента, которое приводит к действительным значениям функции. Иначе говоря, множество значений аргумента, на котором “функция работает”.

Для общего понимания пример пока без формулы. Функция задана в виде пар отношений:

{(2, 1), (4, 2), (6, -6), (5, -1), (7, 10)}.

Найти область определения это функции.

Ответ. Первый элемент пар – это переменная x. Так как в задании функции даны и вторые элементы пар – значения переменной y, то функции имеет смысл только для тех значений икса, которым соответствует определённое значения игрека. То есть берём все иксы данных пар в порядке возрастания и получаем из них область определения функции:

{2, 4, 5, 6, 7}.

Та же логика работает, если функция задана формулой. Только вторые элементы в парах (то есть значения игрека) получаем, подставляя в формулу те или иные значения икса. Однако, чтобы найти область определения функции, нам не нужно перебирать все пары иксов и игреков.

Пример 0. Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Нужно всего лишь решить неравенство

x – 5 ≥ 0,

так как для того, чтобы мы получили действительное значение игрека, подкоренное выражение должно быть больше или равно нулю. Получаем решение: область определения функции – все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).

На чертеже сверху – фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в “плюсовом” направлении штриховка продолжается бесконечно вместе с самой осью.

Далее на этом уроке разберём в теории и на примерах нахождение области определения всех часто встречающихся в математике функций. Но прежде – кое-какие аналогии из мира компьютеров и их пользователей.

Если вы пользуетесь компьютерными программами, которые на основании введённых данных выдают какой-то ответ, то можете заметить, что при некоторых значениях введённых данных программа выдаёт сообщение об ошибке, то есть о том, что при таких данных ответ не может быть вычислен.

Такое сообщение предусмотрено авторами программы, если выражение для вычисления ответа достаточно сложно или касается какой-то узкой предметной области, или же предусмотрено авторами языка программирования, если дело касается общепринятых норм, например, что нельзя делить на нуль.

Но и в том и в другом случае ответ (значение некоторого выражения) не может быть вычислен по той причине, что выражение при некоторых значениях данных не имеет смысла.

Пример (пока не совсем математический): если программа выдаёт название месяца по номеру месяца в году, то, введя “15”, вы получите сообщение об ошибке.

Чаще всего вычисляемое выражение как раз и представляет собой функцию. Поэтому такие недопустимые значения данных не входят в область определения функции.

И в вычислениях от руки так же важно представлять область определения функции. Например, вы вычисляете некоторый параметр некоторого изделия по формуле, представляющей собой функцию.

При некоторых значениях аргумента на входе вы на выходе не получите ничего.

Постоянная (константа) определена при любых действительных значениях x, следовательно, данная функция определена на всём множестве R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[.

Пример 1. Найти область определения функции y = 2.

Решение.

Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f(x) = 2 определено при любых действительных значениях x, следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

В случае, когда функция задана формулой и n – натуральное число:

Пример 2. Найти область определения функции .

Решение.

Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно, то есть, если – 1 ≤ x ≤ 1. Следовательно, область определения данной функции – [- 1; 1].

Заштрихованная область числовой прямой на чертеже сверху – это область определения данной функции.

Область определения степенной функции с целым показателем степени

В случае, когда функция задана формулой :

если a – положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[;

если a – отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[, то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 3. Найти область определения функции .

Решение.

Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы – так же целого числа. Следовательно, область определения данной функции – вся числовая прямая, то есть ]- ∞; + ∞[.

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если – положительное, то областью определения функции является множество [0; + ∞[;

если – отрицательное, то областью определения функции является множество ]0; + ∞[.

Пример 4. Найти область определения функции .

Решение.

Оба слагаемых в выражении функции – степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции – множество [0; + ∞[.

На чертеже сверху заштрихована часть числовой прямой от нуля (включительно) и больше, причём штриховка продолжается вместе с самой прямой до плюс бесконечности.

Пример 5. Найти область определения функции .

Решение.

Дробный показатель степени данной степенной функции – отрицательный. Поэтому решим строгое неравенство, когда квадратный трёхчлен в скобках строго больше нуля::

.

Дикриминант получился отрицательный. Следовательно сопряжённое неравенству квадратное уравнение не имеет корней. А это значит, что квадратный трёхчлен ни при каких значениях “икса” не равен нулю. Таким образом, область определения данной функции – вся числовая ось, или, что то же самое – множество R действительных чисел, или, что то же самое – ]- ∞; + ∞[.

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[.

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[.

Найти область определения функции самостоятельно, а затем посмотреть решение

Нет времени вникать в решение? Можно заказать работу!

Область определения тригонометрических функций

Область определения функции y = sin(x) – множество Rдействительных чисел.

Область определения функции y = cos(x) – так же множество R действительных чисел.

Область определения функции y = tg(x) – множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x) – множество R действительных чисел, кроме чисел .

Пример 8. Найти область определения функции .

Решение.

Внешняя функция – десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным.

Аргумент здесь – синус “икса”.

Поворачивая воображаемый циркуль по окружности, видим, что условие sin x > 0 нарушается при “иксе” равным нулю, “пи”, два, умноженном на “пи” и вообще равным произведению числа “пи” и любого чётного или нечётного целого числа.

Таким образом, область определения данной функции задаётся выражением

,

где k – целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x) – множество [-1; 1].

Область определения функции y = arccos(x) – так же множество [-1; 1].

Область определения функции y = arctg(x) – множество R действительных чисел.

Область определения функции y = arcctg(x) – так же множество R действительных чисел.

Пример 9. Найти область определения функции .

Решение.

Решим неравенство:

Таким образом, получаем область определения данной функции – отрезок [- 4; 4].

Пример 10. Найти область определения функции .

Решение.

Решим два неравенства:

Решение первого неравенства:

Решение второго неравенства:

Таким образом, получаем область определения данной функции – отрезок [0; 1].

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x, при которых знаменатель дроби обращается в нуль.

Пример 11. Найти область определения функции .

Решение.

Решая равенство нулю знаменателя дроби, находим область определения данной функции – множество ]- ∞; – 2[ ∪ ]- 2 ;+ ∞[.

Пример 12. Найти область определения функции .

Решение.

Решим уравнение:

Таким образом, получаем область определения данной функции – ]- ∞; – 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[.

Пример 13. Найти область определения функции .

Решение.

Область определения первого слагаемого – данной функции – множество R действительных чисел, второго слагаемого – все действительные числа, кроме -2 и 2 (получили, решая равенство нулю знаменателя, как в предыдущем примере). В этом случае область определения функции должна удовлетворять условиями определения обоих слагаемых. Следовательно, область определения данной функции – все x, кроме -2 и 2.

Пример 14. Найти область определения функции .

Решение.

Решим уравнение:

Уравнение не имеет действительных корней. Но функция определена только на действительных числах. Таким образом, получаем область определения данной функции – вся числовая прямая или, что то же самое – множество R действительных чисел или, что то же самое – ]- ∞; + ∞[.

То есть, какое бы число мы не подставляли вместо “икса”, знаменатель никогда не будет равен нулю.

Пример 15. Найти область определения функции .

Решение.

Решим уравнение:

Таким образом, получаем область определения данной функции – ]- ∞; – 1[ ∪ ]- 1 ; 0[ ∪ ]0 ; 1[ ∪ ]1 ;+ ∞[.

Пример 16. Найти область определения функции .

Решение.

Кроме того, что знаменатель не может быть равным нулю, ещё и выражение под корнем не может быть отрицательным. Сначала решим уравнение:

График квадратичной функции под корнем представляет собой параболу, ветви которой направлены вверх. Как следует из решения квадратного уравнения, парабола пересекает ось Ox в точках 1 и 2. Между этими точками линия параболы находится ниже оси Ox, следовательно значения квадратичной функции между этими точками отрицательное. Таким образом, исходная функция не определена на отрезке [1; 2].

Область определения линейной функции

Если функция задана формулой вида y = kx + b, то область определения функции – множество R действительных чисел.

Пройти тест по теме Предел

Весь раздел “Исследование функций”

Источник: https://function-x.ru/function_definition_area.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.