Энергия магнитного поля определение

Индуктивность. Энергия магнитного поля

Энергия магнитного поля определение

Индуктивность – это коэффициент пропорциональности между электрическим током, протекающим по замкнутому контуру, и магнитным потоком через поверхность, ограниченную контуром.

Математическая формула, соответствующая этому определению:

Ф = L*I

где Ф – магнитный поток,

L – индуктивность,

I – сила тока.

Это классическое определение индуктивности, принятое на начальном этапе изучения электромагнитных явлений. В нем отражено одно из проявлений индуктивности.

Познакомившись с ним, можно подумать, что индуктивность – свойство небольшого класса объектов, неких замкнутых контуров, создающих магнитное поле.

Это не так; проявления индуктивности многообразны, и мы сталкиваемся с ними в повседневной жизни, зачастую не сознавая этого.

В девятнадцатом веке ученые только начинали изучать электромагнитные явления. Понятие индуктивности, как особого свойства электропроводящего контура, сформулировано в 1886 году, при изучении постоянного тока.

Правило Ленца и индуктивность

Электрический ток создает магнитное поле – это была сенсация в девятнадцатом веке.

Электрические и магнитные явления представлялись в прошлом совершенно разными явлениями, и открытие связи между ними вызвало горячий интерес исследователей.

Магнитное поле казалось многоликим, присущим совершенно разным объектам – куску магнитной руды, Земному шару и… проводу с током. Сейчас известно, что в каждом из этих объектов магнитное поле порождается движением электрического заряда.

В современной науке установлена общая природа электрического и магнитного полей. При изучении постоянного тока был сделан первый шаг к пониманию этой истины – открыта связь между  током и магнитным полем, между силой тока и силой создаваемого им магнитного поля.

Символ L, которым обозначается индуктивность, выбран в честь физика Эмиля Ленца. Он изучал магнитные явления, возникающие при протекании электрического тока. Сила Ленца – это сила, действующая на проводник с током, помещенный в магнитное поле.

Ленц также наблюдал, как катушки из электрических проводов, по которым пропускался ток, притягивались или отталкивались, подобно постоянным магнитам.

Притяжение или отталкивание? Это определялось направлением тока в витках, взаимным расположением катушек. А сила взаимодействия определялась количеством витков и силой тока.

При одинаковом токе, катушка с большим числом витков создавала большее магнитное поле.

Контур с током и катушка индуктивности

Контур с током может быть одиночным (одновитковая катушка)

Контур с током может состоять из нескольких контуров (многовитковая катушка)

В электротехнике и радиотехнике применяются многовитковые катушки.

Чем больше витков, тем больше индуктивность катушки. Один и тот же ток, протекающий через одиночный виток и через многовитковую катушку, создаст разное по силе магнитное поле. У многовитковой катушки индуктивность больше, чем у одного витка; она пропорциональна количеству витков.

Когда нужно создать сильное магнитное поле, наматывают сотни и тысячи витков из тонкой медной проволоки. Такие катушки применяются в электромагнитах, трансформаторах, электродвигателях.

Индуктивность,  индукция, самоиндукция

Если обозначение индуктивности L выбрано в честь физика Ленца, то единица измерения индуктивности Генри (Гн) носит имя другого физика – Джозефа Генри.

Ленц исследовал магнитные явления, возникающие при наличии постоянного тока, а Генри занимался переменным током. Точнее, он рассматривал переходные процессы, возникающие при включении и выключении электрического тока.

Что происходит, когда ток в цепи, содержащей катушку индуктивности, включается? Он не возрастает мгновенно, а увеличивается плавно. Чем больше витков в катушке, тем более растянут во времени процесс нарастания тока. Но число витков влияет еще и на силу магнитного поля, создаваемого током в катушке!

Джозеф Генри установил связь этих явлений. Оказывается, чем больше индуктивность, тем более инерционный процесс возрастания тока при включении. Это можно сравнить с массой в механике: чем массивнее тело, тем дольше оно разгоняется при воздействии на него силы.

Почему в катушке тормозится увеличение тока? Мы наблюдаем здесь явление самоиндукции. Ведь ток создает магнитное поле, не так ли?

Но на этом преобразование полей не останавливается. Меняющееся магнитное поле создает электрическое поле! Если в поле находится проводник, в нем наводится электродвижущая сила.  Это явление названо электромагнитной индукцией.

Именно меняющееся, переменное магнитное поле способно создать электрическое поле и навести в проводнике электрический ток.

После того, как щелкнул выключатель, в цепи происходят такие процессы:

  1. Появляется и начинает увеличиваться электрический ток;
  2. Возрастающий электрический ток создает меняющееся магнитное поле;
  3. Переменное магнитное поле в том же самом проводнике наводит электрическое напряжение, противоположное приложенному;
  4. Наведенная магнитным полем электродвижущая сила, противоположная напряжению от источника, уменьшает суммарное напряжение, действующее на цепь, а ток соответствует уменьшенному напряжению.

Напряжение, наведенное магнитным полем в проводнике, называется ЭДС самоиндукции. Ток в проводнике является причиной возникновения противоположного напряжения в том же проводнике, то есть причиной торможения тока является сам ток; поэтому процесс назван самоиндукцией.

Величина ЭДС самоиндукции зависит от скорости изменения тока и от индуктивности:

Минус в формуле указывает на то, что в цепи возникает противо ЭДС, направленная так, чтобы тормозить изменение тока.

В соответствии с этой формулой, единицу индуктивности 1 Генри определили следующим образом:

Один Генри – это индуктивность, при которой скорость изменения тока, равная одному амперу в секунду, приводит к наведению ЭДС самоиндукции, равной одному вольту.

1Вольт = — 1 Генри * 1 Ампер/секунда, или

1В = — 1 Гн * 1А/с

Индуктивность как мера самоиндукции проще поддается измерению, чем индуктивность – как коэффициент между током и магнитным потоком. В благодарность за открытие явления самоиндукции физики присвоили имя Джозефа Генри единице измерения индуктивности.

Энергия магнитного поля

Магнитное поле обладает энергией. Магнитные силы совершают механическую работу, притягивая или отталкивая другие магниты или тела из магнитных материалов. Меняющееся магнитное поле индуцирует электрический ток в проводниках.

Магнитную энергию можно выразить через математическую формулу.  В предыдущем разделе упоминалась инерционность индуктивной цепи, ее роль в электромагнитных явлениях сравнивалась с ролью массы в механике. Интересно, что эта аналогия углубляется при рассмотрении энергии.

Формула энергии магнитного поля похожа на формулу кинетической энергии механического тела:

Энергия магнитного поля пропорциональна индуктивности и квадрату величины тока.

Во время переходного процесса, когда при включении ток в цепи замедленно нарастает, происходит накопление магнитной энергии. Эта энергия может использоваться для совершения работы. И эта энергия создает проблемы при выключении тока в цепи с большой индуктивностью.

Если ток уменьшать, возникнет ЭДС, замедляющая уменьшение тока. Но если ток выключить, резко разорвав цепь, скорость изменения тока от конкретного значения до нуля теоретически должна быть бесконечно велика. Это значит, ЭДС самоиндукции при выключении тока тоже должна быть бесконечно велика.

Этот математический парадокс возник из-за упрощенных идеализированных формул.

  В реальности ток не прекращается мгновенно, размыкание контактов занимает некоторый короткий промежуток времени, но все равно скорость изменения тока велика, и наводится ЭДС значительной величины.

Обычным явлением при выключении цепи является искрение. Если выключать ток в цепи с большой индуктивностью, то попытка резкого прекращения тока может стать причиной вспышки электрической дуги.

Что произойдет, если дуга не вспыхнула, а ток прекратился? Куда девалась энергия магнитного поля? Частично она перешла в тепловую энергию – контакты выключателя нагрелись.

Остальная часть энергии магнитного поля, при его резком уменьшении до нуля, перешла в электромагнитную волну.

Переменное магнитное поле индуцировало переменное электрическое поле; в свою очередь, переменное электрическое вызвало новую волну магнитного, и так далее.

Выключение тока простым щелчком выключателя – посылает в бесконечное пространство широкий «шумовой» спектр электромагнитных колебаний.

Распрямим провод — индуктивность остается

Первоначально индуктивность считали атрибутом контура или катушки. Причина этого – в способах измерения. Магнитный поток через контур или катушку локализован, его можно измерить (хотя точность измерений долгое время была невысокой). Если катушку раскрутить и провод выпрямить, и пропускать ток по прямому проводу, магнитное поле все равно возникнет. Но померить его поток непросто!

А что произойдет с самоиндукцией? Ток в прямом проводе возрастает быстрее, чем в катушке. Но если провод протянуть на несколько километров (построить линию электропередач), то явление самоиндукции наблюдается.  Возрастание тока, при его подаче в линию передач, происходит не мгновенно. Значит, прямой провод обладает индуктивностью, хотя и меньшей, чем катушка.

На рисунке показан проводник с током и силовые линии магнитного поля, имеющие форму окружностей.

Индуктивность и реактивное сопротивление

Катушка индуктивности может оказывать ничтожно малое сопротивление установившемуся постоянному току, но ее сопротивление переменному току значительно.  Такое сопротивление называется реактивным.

Реактивное сопротивление переводит энергию электрического тока в энергию электромагнитного поля. Если на цепь, обладающую индуктивностью L, подать переменное напряжение с частотой f, то реактивное сопротивление будет равно

Чем выше реактивное сопротивление, тем меньше будет переменный ток.

Реактивное сопротивление зависит от частоты. Элементы с маленькой индуктивностью создают ничтожно малое сопротивление на низких частотах, но при переходе от частоты 50 Герц к частоте 50 МГц (мегагерц) сопротивление возрастает в миллион раз.

При низких частотах не принимаются во внимание индуктивности небольших отрезков провода, но при сотнях мегагерц и при гигагерцах приходится учитывать даже индуктивность проволочных  выводов радиодеталей. В технике сверхвысоких частот применяются безкорпусные элементы, не имеющие проволочных выводов. Вместо них – контактные площадки, которые паяют на печатную плату.

Цепь с индуктивным сопротивлением, при подаче переменного тока, излучает электромагнитные волны. Но возможен и обратный процесс: при воздействии электромагнитного поля в индуктивности наводится переменный ток.

Стиральная машина и индуктивное сопротивление

Пользователи автоматических стиральных машин часто жалуются на то, что ток «пробивает на барабан».  Электрическая изоляция таких машин, как правило, в полном порядке, но все равно есть неприятное ощущение от прикосновения к металлическому барабану, при загрузке и выгрузке вещей.

Причина – в наведенном токе. Машина-автомат имеет блок питания, в котором сетевое напряжение преобразуется в высокочастотное.

  Это высокочастотное напряжение наводится на все электропроводящие предметы, в частности на металлический барабан. Индуктивность барабана не нормируется, но наверняка она мала.

Тем не менее, ток высокой частоты электронной схемы индуцирует на металлических частях стиральной машины отклик – небольшой ток.

Подобное явление иногда наблюдают пользователи современных водонагревателей с электронным управлением, греющих водопроводную воду.  Если блок питания в устройстве  оказывается близко к трубе с водой, на ней может наводиться переменный высокочастотный ток,  и вода из крана «щиплется». Избежать неприятных ощущений можно, отключив электрическое напряжение от котла.

Индуктивность человеческого тела

Наше тело является электрическим проводником,  а все проводники, в той или иной степени, обладают индуктивностью. Это значит, что мы подвержены воздействию электромагнитного поля, под его воздействием в нашем теле могут индуцироваться переменные токи.

Индуктивность человеческого тела значительно меньше. чем индуктивность антенны или дросселя, и небольшие электромагнитные поля практически не влияют на нас. Но чем выше мощность излучения, а главное – чем выше частота электромагнитного поля, тем воздействие сильнее. Сильное поле СВЧ диапазона представляет смертельную опасность.

Для защиты людей на производствах, связанных с сильными электромагнитными полями, применяют специальную экранирующую одежду, экранированные помещения. Существуют зоны, закрытые для посещения – вокруг мощных антенн, радиолокаторов.

Периодически появляется информация о вреде длительных разговоров по мобильному телефону, когда трубка прижата к голове. Телефон излучает высокочастотный электромагнитный сигнал небольшой мощности, из-за малой мощности его влияние незначительно. Но при длительном воздействии это излучение  может нанести вред здоровью. Использовать скайп, установленный на компьютер, предпочтительнее.

Источник: http://fizikatyt.ru/2017/04/05/%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D1%8C-%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F-%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE/

Энергия магнитного поля

Энергия магнитного поля определение

Пусть все рассматриваемое пространство заполняет однородный магнетик. В нем индукция магнитного поля, которое создают токи, изменяется в $\mu $ раз в сравнении с индукцией в вакууме. Во столько же изменяются магнитные потоки $Ф$ и $dФ.$ Элементарная работа, выполняемая внешним источником против электродвижущей силы индукции, будет равна:

Допустим, что магнитное поле создается двумя контурами. Если $L_{11}$ – индуктивность первого контура, $L_{22}$ – индуктивность второго контура, то можно записать, что:

Поток ${\Phi }_{12}$, который пересекает контур (1), создаваемый током во втором контуре равен:

где $L_{12}$- постоянная, взаимная индуктивность первого и второго контуров. Для второго контура имеем:

Из формул (2) – (4) следует, что если изменяются магнитные потоки в магнетике, то индукции контура и взаимные индукции увеличиваются в $\mu $ раз. Это значит, что взаимные индукции контуров равны:

При этом магнитные потоки в магнитике могут быть выражены как:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

где $r_{21}=r_{12}$ – расстояния между элементами контуров с током $d\overrightarrow{l_1}и\ d\overrightarrow{l_2}$.

Формула же записанная для энергии магнитного поля, которое создано двумя контурами с токами для вакуума и магнетика (при отсутствии ферромагнетика) по форме не изменяется:

Если магнитное поле образуется $N$ контурами, то его энергию можно вычислить как:

Рисунок 1.

при $i=k$ коэффициент $L_{ik}$ называется индуктивностью контура ${\rm I}$, при $ie k$, этот же коэффициент называют взаимной индуктивностью ${\rm I}$-го и k-го контуров. Эти коэффициенты определяются формулами при $ie k$:

где $d\overrightarrow{l_i},d\overrightarrow{l_k}$ – элементы длины контуров ${\rm I}$-го и $k$-го. $r_{ik}-$расстояние между ними. При этом $L_{ik}=L_{ki}$. В результате получается, что энергия магнитного поля токов, которые текут в неограниченном однородном магнетике, изменяется в $\mu $ раз в сравнении с энергией этих же токов в вакууме.

Объемная плотность энергии магнитного поля

Магнитное поле, которое создают токи, распределено по всему пространству. Допустим, что магнитное поле создается одиночным контуром с током. Магнитная энергия поля в таком случае может быть представлена как:

где поток магнитной индукции можно выразить как:

где $L$ контур тока, $S$ – поверхность, которая натянута на контур $L$, $\overrightarrow{A}\ $- векторный потенциал, магнитного поля, которое создается током $I$. Замкнутый ток взаимодействует со своим магнитным полем. Каждый элемент тока $Id\overrightarrow{l}$ создает в пространстве собственное магнитное поле, с которым взаимодействуют другие элементы тока.

Подставим (11) в формулу (10), получим:

Проведем переход от линейных токов к объемным токам с помощью соотношения:

Из выражения (10) получим:

Используем известные формулы:

Преобразуем выражение (12), получим:

По теореме Остроградского – Гаусса имеем:

В том случае, если точки рассматриваются в конечной области пространства, на больших расстояниях от этой области $A\sim \frac{1}{r}$, $H\sim \frac{1}{r2}$, то есть подынтегральное выражение убывает пропорционально $\frac{1}{r3}$.

Поверхность при этом растет пропорционально $r2$, получаем, что интеграл уменьшается $\sim \frac{1}{r}.

$ Получается, что при $r\to \infty $, второй интеграл в выражении (15) равен нулю, тогда полная энергия выражается формулой:

Тогда, можно сказать, что объемная плотность энергии магнитного поля в пространстве равна:

Энергия магнетика во внешнем поле

Если имеется фиксированное распределение токов в пространстве, то энергия магнетика в магнитном поле равна:

где $\overrightarrow{J}$ – намагниченность магнетика, $\overrightarrow{B_0}$ – магнитное поле в свободном пространстве.

Пример 1

Задание: Вычислите магнитную проницаемость железа, если в поле с индукцией $B=1Тл$ плотность энергии магнитного поля в веществе $200 \frac{Дж}{м3}$.

Решение:

В качестве основания для решения задачи используем формулу

\[w_m=\frac{1}{2}\overrightarrow{H}\overrightarrow{B}=\frac{1}{2}\frac{B2}{\mu {\mu }_0}\ \left(1.1\right).\]

Из формулы (1.1) выразим магнитную проницаемость, получим:

\[\mu =\frac{1}{2}\frac{B2}{w_m{\mu }_0}\left(1.2\right).\]

Проведем вычисления:

\[\mu =\frac{1}{2}\cdot \frac{12}{200\cdot 1,26\cdot {10}{-6}}=2\cdot {10}3.\]

Ответ: $\mu =2\cdot {10}3.$

Пример 2

Задание: Определите, как изменится объемная плотность энергии магнитного поля, если индукция магнитного поля тороида, который имеет ферромагнитный сердечник, увеличилась от $B_1=0,9\ Тл\ до\ B_2=1,2\ Тл$. Зависимость $B(H)$ представлена графиком на рис.2.

Рисунок 2.

Решение:

В качестве основания для решения задачи используем формулу

\[w_m=\frac{1}{2}\overrightarrow{H}\overrightarrow{B}\left(2.1\right).\]

Запишем формулу (2.1) для двух состояний магнитного поля и найдем отношение $\frac{w_{2m}}{w_{1m}}$:

\[\frac{w_{2m}}{w_{1m}}=\frac{1}{2}H_2B_2\cdot 2\frac{1}{H_1B_1}=\frac{H_2B_2}{H_1B_1}\left(2.2\right).\]

По графику находим, что при $B_1=1\ Тл\ H_1=400\frac{A}{м}\ до\ B_2=1,2\ Тл\ H_2=800\frac{A}{м}\ $.

Следовательно, искомое отношение равно:

\[\frac{w_{2m}}{w_{1m}}=\frac{1,2\cdot 800}{1\cdot 400}=2,4.\]

Ответ: $\frac{w_{2m}}{w_{1m}}=2,4.\ $

Источник: https://spravochnick.ru/fizika/elektromagnitnaya_indukciya/energiya_magnitnogo_polya/

Энергия магнитного поля тока. Электромагнитное поле. Физика. 11 класс. – Объяснение нового материала

Энергия магнитного поля определение

Изучая явление самоиндукции, пришли к выводу о том, что при изменении силы тока, протекающего через проводник, в этом же проводнике возникает ЭДС индукции, препятствующая изменению основного тока в проводниках.

Это приводит к тому, что сила тока в проводнике достигает своего максимального значения не мгновенно, а в течение некоторого времени. Данное явление наблюдается и при размыкании цепи – сила тока падает до нуля не мгновенно, а постепенно.

Явление самоиндукции связано с тем, что проводник с током находится в пространстве собственного магнитного потока и при любом изменении тока в проводнике меняется и магнитный поток, что в свою очередь приводит к возникновению ЭДС индукции.

ЭДС индукции определяется как отрицательное отношение изменения силы тока к изменению времени и умноженное на индуктивность проводника. А индуктивность определяется геометрическими параметрами проводника.

  (1.1.)

Обратим внимание на то, что при размыкании цепи, ток в ней хоть и убывает, но всё равно существует – это доказывает процесс переноса заряда, которому необходима энергия. Но откуда она берётся? Поскольку никаких других изменений, кроме убывания магнитного поля вокруг проводника не происходит, можно сделать предположение, что энергия локализована в магнитном поле.

Энергия магнитного поля

Необходимо выяснить, откуда берётся энергия и как её рассчитать?

Рассмотрим опыт. Пусть имеется электрическая цепь, в которой катушка с индуктивностью (L) последовательно соединена с лампочкой и через переключатель может быть замкнута либо на источник постоянного тока (), либо на резистор с сопротивлением (R) (рис.1).  

Рис. 1

Если в цепь включить амперметр, то можно получить график зависимости тока в цепи от времени. Сначала, замкнём катушку на источник ЭДС – в цепи будет протекать ток І (рис. 2).

Рис. 2

            Затем, в некоторый момент времени t0 переключим ключ, замыкая катушку на резистор R – в цепи будет протекать убывающий ток.

С момента времени t0 до полного исчезновения тока пройдёт определённое время, в течение которого будет происходить перенос заряда в цепи катушки и резистора. Следовательно, будет совершаться работа – убывание тока в катушке вызовет явление самоиндукции и в ней возникнет ЭДС самоиндукции.

Разобьём участок 2 движения тока на бесконечно малые интервалы времени ∆t, такие, что на каждом интервале изменения тока можно считать линейными (рис.3).

Рис. 3

На каждом таком участке будет совершаться работа численно равная произведению ЭДС индукции на переносимый за этот интервал времени заряд

  (1.2.)

   (1.3.)

Подставим выражение для ЭДС самоиндукции в работу на интервале времени ∆t.

  (1.4.)

Отношение перенесённого заряда ∆q к интервалу времени ∆t является средним значением тока на этом элементарном интервале времени.

  (1.5.)

Тогда выражение для работы на элементарном интервале времени примет вид.

  (1.6.)

Если просуммировать работу по всем элементарным участкам ∆t от t0 до 0 получим выражение для полной работы за весь интервал времени.

  (1.7.)

Такая работа пойдёт на нагревание проводников внутри катушки замкнутой на резистор.

https://www.youtube.com/watch?v=oncszWPBiSc

Выразим энергию магнитного поля, через параметры магнитного поля. Для катушки индуктивность равна произведению магнитной постоянной на объём катушки и квадрат числа витков на единице длины.

 (1.8.)

 (1.9.)

Модуль магнитной индукции катушки определяется соотношением (1.10.).

 (1.10.)

Тогда для энергии магнитного поля получим выражение (1.11.). Разделим выражение для энергии магнитного поля катушки на её объём, считая, что всё магнитное поле сосредоточено в объёме катушки (1.12.).

  (1.11.)

 (1.12.)

Плотность энергии магнитного поля

Развивая теорию электромагнетизма, Джеймс Кларк Максвелл показал, что полученное выражение для длинной катушки справедливо для любых магнитных полей, а полученная величина называется плотность энергии.

Итоги

При замыкании цепи ток нарастает не мгновенно, а в течение некоторого времени, поскольку источник тока должен совершить работу против ЭДС самоиндукции. Эта работа аккумулируется в магнитном поле, которое окружает проводник с током.

В последствие, энергия магнитного поля преобразуется в работу вихревого электрического поля, которое возникает в проводнике после размыкания цепи и, затем, некоторое время поддерживает индукционный ток в этом проводнике.

Энергия магнитного поля вычисляется по формуле половина произведения индуктивности проводника на квадрат силы тока, протекающего через проводник.     

  (1.13.)

Электромагнитное поле. Теория Максвелла

Эксперимент

Рассмотрим приведенную схему и случай, когда подключён источник постоянного тока (рис 1).

 Рис. 1. Схема

К основным элементам цепи относят лампочку, обычный проводник, конденсатор – при замыкании цепи на обкладках конденсатора возникает напряжение равное напряжению на зажимах источника.

Конденсатор представляет собой две параллельные металлические пластины, между которыми находится диэлектрик. Когда подают разность потенциалов на обкладки конденсатора, они заряжаются, и внутри диэлектрика возникает электростатическое поле. При этом тока внутри диэлектрика при небольших напряжениях быть не может.

При замене постоянного тока на переменный свойства диэлектриков в конденсаторе не меняются, и в диэлектрике по-прежнему практически отсутствуют свободные заряды, но мы наблюдаем то, что лампочка горит. Возникает вопрос: что же происходит? Возникающий в данном случае ток Максвелл назвал током смещения.

Мы знаем о том, что при помещении токопроводящего контура в переменное магнитное поле, в нём возникает ЭДС индукции.  Это обусловлено тем, что возникает вихревое электрическое поле.

Гипотеза Максвелла 

А что если подобная же картина происходит при изменении электрического поля?

Гипотеза Максвелла: изменяющееся во времени электрическое поле вызывает появление вихревого магнитного поля.

Согласно этой гипотезе, магнитное поле после замыкания цепи образуется не только вследствие протекания тока в проводнике, но и вследствие наличия переменного электрического поля между обкладками конденсатора. Это переменное электрическое поле порождает магнитное поле в той же области между обкладками конденсатора.

Причём, это магнитное поле точно такое же, как будто бы между обкладками конденсатора протекал ток, равный току во всей остальной цепи. В основе теории лежат четыре уравнения Максвелла, из которых следует, что изменение электрического и магнитного полей в пространстве и во времени происходят согласованным образом. Так, электрическое и магнитное поле образуют единое целое.

Электромагнитные волны распространяются в пространстве в виде поперечных волн с конечной скоростью.

Указанная взаимосвязь между переменным магнитным и переменным электрическим полем говорит о том, что они не могут существовать обособленно друг от друга.

Возникает вопрос: касается ли это утверждение статических полей (электростатического, создаваемого постоянными зарядами, и магнитостатического, создаваемого постоянными токами)? Такая взаимосвязь существует и для статических полей.

Но важно понимать, что эти поля могут существовать по отношению к определённой системе отсчёта.

Покоящийся заряд создаёт в пространстве электростатическое поле (рис. 2) относительно определённой системы отсчёта. Относительно других систем отсчёта он может двигаться и, следовательно, в этих системах этот же заряд будет создавать магнитное поле.

Рис. 2. Закон Кулона

Электромагнитное поле – это особая форма существования материи, которая создаётся заряжёнными телами и проявляется по действию на заряжённые тела. В ходе этого действия их энергетическое состояние может изменяться, следовательно, электромагнитное поле обладает энергией.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.