Электрический ток определение

Что такое электрический ток?

Электрический ток определение

Каждому обывателю знакомы на слух электрические величины — ток, напряжение, — от них зависит работа бытовых приборов, но полное понимание определения электротока есть у немногих людей.

Показательно сравнение электрического тока с течением реки, только в нем двигаются частицы, имеющие заряд, а в реке — вода.

Надо понимать, что ток движется только в одном направлении, для его существования должны быть созданы условия, рассмотрим эти процессы подробней.

Основные определения

Электричество каждый день окружает нас, но что такое электрический ток и связанные с ним величины — понимает не каждый человек, однако они важны для повседневной жизни. Есть несколько толкований понятия электротока:

  1. Принятое в школьном учебнике определение, что электрический ток — это движение частиц, имеющих заряд за счет воздействия на них электрического поля. Частицами являются: протоны, дырки, электроны, ионы.
  2. В электрической литературе высших учебных заведений пишется, что электрический ток это — скорость, с которой заряд изменяется с течением времени. Принимается отрицательный заряд электронов, положительный у протонов и нейтральный у нейтронов.

Схема протекания электротока в цепи:

Схема протекания электротока в цепи

В электротехнике специалисты отмечают значение такого понятия, как сила тока — это количество частиц, имеющих заряд, которые проходят через сечение проводника с течением времени.

Движение тока в проводнике можно описать следующим образом: «…Все токопроводящие материалы имеют внутреннее строение (молекулы, атомы, ядра с вращающимися электронами), когда на материал воздействует химическая реакция, электроны от одного атома перебегают к другому.

Создается ситуация, при которой одни атомы испытывают недостаток в электронах, а другие — их избыток, что показывает противоположность заряда. Электроны стремятся к переходу из одного вещества в другое, это движение и есть электрический ток».

Специалисты акцентируют внимание на том, что в этом случае ток течет только до того момента, пока не произойдет уравнивание зарядов в двух веществах.

Для понимания движения тока важно знать определение напряжения — это разность потенциалов, которые берутся в двух точках электрического поля, измеряются в вольтах.

Электрическая энергия

В разных регионах, в частности, и в Украине простой обыватель интересуется: «Що таке електричний струм?», с какой целью он применяется, из чего происходит. Повседневно мы пользуемся электрической энергией, которая представлена переменным током в электрических сетях.

Переменный ток в проводнике — это когда частицы, имеющие заряд за определенный промежуток времени, меняют его по направлению, а также по величине. Графически переменный ток представляется синусоидой.

Создается он генераторами, в которых вращаются катушки с проводами и в процессе вращения пересекают магнитное поле.

В период вращения катушки могут открываться и закрываться по отношению к магнитному полю, что создает электрический ток, который меняется в проводниках по направлению, а полный цикл проходит за одну минуту.

Электрический ток в генераторах, принцип устройства машин:

Электрический ток в генераторах, принцип устройства машин

Вращение генераторов происходит от паровых турбин, имеющих разные источники питания: уголь, газ, атомный реактор, нефть.

Далее через систему трансформаторов повышается напряжение тока, через проводники нужного диаметра он переносится без потерь на длительное расстояние.

Диаметр провода, по которому проходит ток, определяет его силу и величину, горячими линиями в энергетике называются магистральные линии передачи энергии, есть и заземленные варианты, когда передача электроэнергии происходит под землей.

Где применяется электрический ток?

Именно ток значительно облегчает нам жизнь, создавая комфорт в доме. Он применяется для освещения помещений, улицы, для просушки вещей, в нагревательных элементах электроплиты, в других бытовых приборах и устройствах, выполняет работу подъема гаражных дверей и т.д.

Работа электротока в быту:

Работа электротока в быту

Условия, необходимые для получения электротока

Для существования электротока нужны следующие условия: наличие частиц, имеющих заряд, электропроводный материал, по которому будут двигаться частицы, источник напряжения. Важным условием получения электротока является наличие напряжения, которое определяется разностью потенциалов. Иными словами, сила, создаваемая заряженными частицами отталкивания, в одной точке больше, чем в другой.

Природных источников напряжения не существует, по этой причине вокруг нас равномерно распределяются электроны, но такие изобретения, как батарейки дали возможность накапливать в них электрическую энергию.

Другим важным условием является электрическое сопротивление, или проводник, по которому будут двигаться частицы, имеющие заряд. Материалы, в которых это действие возможно, называются электропроводными, а те, в которых нет свободного движения электронов, — изоляторами. Обыкновенный провод имеет проводящую металлическую жилу и изолирующую оболочку.

Электроток в проводниках

В любом проводнике есть носители электрического заряда, которые приходят в движение под воздействием силы поля, создаваемого электрической машиной.

Металлические проводники переносят заряд при помощи электронов. Чем выше температура проводника и нагрев провода, тем хуже протекает ток, так как в нем начинается хаотическое движение атомов от теплового воздействия, увеличивается сопротивление проводящего материала. Чем ниже температура проводника (в идеале — стремление к нулю), тем меньше его сопротивление.

Движение заряженных частиц в проводнике:

Движение заряженных частиц в проводнике

Жидкости могут проводить электроток при помощи ионов (электролиты). Перемещение происходит к электроду, имеющему противоположный с ионом знак, и, оседая на нем, ионы осуществляют процесс электролиза. Анионы — положительно заряженные ионы, двигающиеся к катоду. Катионы — ионы, имеющие отрицательный заряд, двигаются к аноду. В процессе нагревания электролита уменьшается его сопротивление.

Газ также имеет проводимость, электроток в нем — плазма. Движение происходит при помощи заряженных ионов или свободных электронов, которые получаются в процессе излучения.

Электронно-лучевая трубка — это пример электротока в вакууме от стержня катода к стержню анода.

Электроток в полупроводниках

Для понимания прохождения тока в этом материале дадим ему определение.

Полупроводник — промежуточный материал между проводником и изолятором, зависит от удельной проводимости, наличия в нем примесей, температурного состояния и воздействующего на него излучения.

Чем ниже температура, тем больше сопротивление полупроводника, свойства его влияют на измерения характеристик. Электроток в полупроводнике — это сумма электронного и дырочного тока.

Когда повышается температура полупроводника, происходит разрыв ковалентных связей от действия тепловой энергии на валентные электроны, образуются свободные электроны, в точке разрыва получается дырка.

Она занимается валентным электроном другой пары, а сама перемещается далее в кристалле. Когда свободный электрон встречается с дыркой, между ними происходит рекомбинация, восстановление электронных связей.

Когда на полупроводник воздействуют энергией электромагнитного излучения, появляются в нем электронно-дырочные пары.

Возникновение электротока в полупроводнике:

Возникновение электротока в полупроводнике

Законы электрического тока

В электротехнике применяются основные законы, которые дают определение электрического тока. Один из главнейших — закон Ома, особенностью которого является быстрота передачи энергии без изменения ее формы из одной точки в другую.

Закон Ома:

Закон Ома

Этот закон показывает связь между напряжением и силой тока, а также сопротивлением проводника или участка цепи. Сопротивление измеряется в омах.

Работу электротока определяют законом Джоуля-Ленца, который говорит о том, что в любой точке цепи ток выполняет работу.

Звуон Джоуля – Ленца Фарадей открыл магнитную индукцию, а также опытным способом установил, что при пересечении линии магнитной индукции поверхностью замкнутого проводника в нем появляется электроток. Он вывел закон электромагнитной индукции:
Закон электромагнитной индукции

Не замкнутые проводники, пересекающие линии магнитного поля, получают на концах напряжение, что говорит о появлении ЭДС индукции. Если магнитный поток неизменен и пересекает замкнутый контур, то в нем не возникает электротока. ЭДС индукции замкнутого контура, когда меняется магнитный поток, равен модулю его скорости изменения.

Вывод

Когда по проводнику протекает электрический ток, он его нагревает, по этой причине необходимо соблюдать меры безопасности, работая с электрическими приборами и устройствами. Нельзя допускать перегрузки линии передачи энергии, она может нагреться, и возникнет пожар. Электроток всегда движется по пути наименьшего сопротивления.

В момент появления КЗ (короткого замыкания) ток в разы возрастает, происходит моментальное выделение огромного теплового значения, которое плавит металл. Электрический ток может вызвать ожоги на теле человека или животного, но применяется в реанимационных установках, для депрессивных решений и лечения заболеваний.

По правилам электробезопасности ощутимый человеком ток наступает с величины один миллиампер, а опасным для здоровья считается ток с 0,01 ампера, смертельной величиной определена сила тока в 0,1 ампера. Безопасное напряжение для человека — 12-24-32-42 вольта.

Источник: https://domelectrik.ru/baza/teoriya/elektricheskiy-tok

Электрический ток

Электрический ток определение
Электрический ток — направленное (упорядоченное) движение заряженных частиц.

Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.

Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.

В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).

В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие.

Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры.

Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток — ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.

Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.

При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики:

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.

За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны).

То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Основные типы проводников:

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток.

Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника.

Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации.

При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них.

Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Источник: http://www.elektal.com.ua/spravochnik/articles/elektricheskiy_tok.html

Постоянный электрический ток: определение, механизм, характеристики

Электрический ток определение
Определение 1

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует.

В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита.

В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Определение 2

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast. Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε=Aq (1), где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε=В.

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Определение 3

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S:

I=dqdt (2).

Ток может быть постоянным и переменным. При неизменной силе тока  с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I=qt (3), где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе СИ основная единица измерения силы тока – Ампер (А).

1 A=1 Кл1 с.

Определение 4

Плотность – это векторная локальная характеристика. Вектор плотности тока j→способен показывать, каким образом распределяется ток по сечению S. Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

j=dIdS' (4), где dS' является проекцией элементарной поверхности dS на плоскость, перпендикулярную вектору плотности тока, dI – элементом силы, которая идет через поверхности dS и dS'.

Представление плотности в металле возможно по формуле:

j→=-n0qeυ→ (5), где n0 обозначается концентрацией электронов проводимости, qe=1,6·10-19 Кл  – зарядом электрона, υ→ – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то

υ→=10-4 мс.

Закон сохранения заряда

Рисунок 1

Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S, изображенной на рисунке 1, ограничивающей объем V количество выходящего электричества в единицу времени (1 секунду) из объема V можно определить по формуле ∮sjndS. Такое же количество электричества выражается через заряд -∂q∂t, тогда получаем:

∂q∂t=-∮SjndS (6), где jn считается проекцией вектора плотности на направление нормали к элементу поверхности dS, при этом:

jn=jcos a (7), где a является углом между направлением нормали к dS и вектором плотности тока. Уравнение (6) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S.

Выражение (6) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:

∮SjndS=0 (8).

Пример 1

Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ, который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E. Направление скорости движения вдоль оси цилиндра.

Решение

Основой решения задачи берется определение силы тока в виде:

I=dqdt (1.1).

Из формулы (1.1) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.

Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:

E=σε0 (1.2), где σ является поверхностной плотностью заряда, ε0=8,85·10-12 КлН·м2. Выразим σ из (1.2), тогда:

σ=E·ε0 (1.3).

Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:

dqdS=σ (1.4).

Используя (1.3), (1.4), имеем:

dq=E·e0dS (1.5).

Выражение элемента поверхности цилиндра идет через его параметры:

dS=2π ·Rdh (1.6), где dh является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:

dq=E·ε0·2h·Rdh (1.7).

Произведем подстановку из (1.7) в (1.1):

I=d(E·ε0·2π·Rdh)dt=2πRε0Edhdt (1.8).

Движение цилиндра идет вдоль оси, тогда запишем:

dhdt=υ (1.9).

Получим:

I=2πRε0Eυ.

Ответ: конвективный ток I=2πRε0Eυ.

Пример 2

Изменение тока в проводнике происходит согласно закону I=1+3t. Определить значение заряда, проходящего через поперечное сечение проводника, за время t, изменяющегося от t1=3 с до t2=7 c. Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?

Решение

Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:

I=dqdt (2.1).

Формула (2.1) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t1 до t2 возможно таким образом:

q=∫t1t2Idt (2.2).

Произведем подстановку имеющегося по условию закона в (2.2) для получения:

q=∫t1t2(1+3t)dt=∫t1t2dt+∫t1t23tdt=t2-t1+3·t22t1t2=(t2-t1)+32t22-t12 (2.3).

Вычислим заряд:

q=7-3+32(72-32)=4+32·40=64 (Кл).

Чтобы определить постоянный ток для получения силы используется формула:

Iconst=qt (2.3), где t считается временем, за которое поперечное сечение проводника пройдет заряд q.

Тогда время протекания заряда равняется:

t=t2-t1 (2.4).

Выражение (2.3) примет вид:

Iconst=qt2-t1 (2.5).

Произведем подстановку и вычислим:

Iconst=647-3=644=16 (A).

Ответ: q=64 Кл. Iconst=16 А..

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/postojannyj-elektricheskij-tok-opredelenie/

Понятие, сущность и проявления электрического тока

Определение 1

Электрический ток – это упорядоченное и направленное движение заряженных частиц.

Такими частицами могут быть:

  • в газах – ионы и электроны,
  • в металлах – электроны,
  • в электролитах – анионы и катионы,
  • в вакууме – электроны (при определенных условиях),
  • в полупроводниках – дырки и электроны (электронно-дырочная проводимость).

Замечание 1

Часто используют такое определение. Электрический ток – это ток смещения, который возникает в результате изменения электрического поля во времени.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Электрический ток может выражаться в следующих проявлениях:

  1. Нагрев проводников. Выделение теплоты не происходит в сверхпроводниках.
  2. Изменение химического состава некоторых проводников. Данное проявление преимущественно можно наблюдать в электролитах.
  3. Формирование электрического поля. Проявляется у всех проводников без исключения.

Рисунок 1. Электрический ток – упорядоченное движение заряженных частиц. Автор24 — интернет-биржа студенческих работ

Классификация электрического тока

Определение 2

Электрический ток проводимости – это явление, при котором заряженные частицы движутся внутри макроскопических элементов той или иной среды.

Конвекционный ток – явление, при котором движутся макроскопические заряженные тела (к примеру, заряженные капли осадков).

Различают постоянный, переменный и пульсирующий электрические токи и их всевозможные комбинации. Однако в таких комбинациях часто опускают термин «электрический».

Существует несколько разновидностей электрического тока:

  1. Постоянный ток – это ток, величина и направление которого слабо изменяются во времени.
  2. Переменный ток – это ток, направление и величина которого прогрессивно меняются во времени. Под переменным током понимается ток, который не является постоянным. Среди всех разновидностей переменного тока основным является тот, величина которого может изменяться только по синусоидальному закону. Потенциал каждого конца проводника в данном случае изменяется по отношению к другому концу попеременно с отрицательного на положительный, и наоборот. При этом он проходит через все промежуточные потенциалы. В результате формируется ток, который непрерывно изменяет направление. Двигаясь в одном направлении, ток возрастает, достигая своего максимума, который именуется амплитудным значением. После чего он идет на спад, на какой-то период приравнивается к нулю, после чего цикл возобновляется.
  3. Квазистационарный ток – это переменный ток, который изменяется относительно медленно, для его мгновенных значений выполняются законы постоянных токов с достаточной точностью. Подобными законами являются правила Кирхгофа и закон Ома. Квазистационарный то во всех сечениях неразветвленной сети имеет одинаковую силу. При расчете цепей данного тока учитываются сосредоточенные параметры. Квазистационарные промышленные токи – это те, в которых условие квазистационарности вдоль линии не выполняется (кроме токов в линиях дальних передач).
  4. Переменный ток высокой частотности – это электрический ток, в котором уже не выполняется условие квазистационарности. Он проходит по поверхности проводника и обтекает его со всех сторон. Такой эффект получил название скин-эффект.
  5. Пульсирующий ток – это электрический ток, у которого направление остается постоянным, а изменяется только величина.
  6. Вихревые токи или токи Фуко – это замкнутые электрические токи, которые расположены в массивном проводнике и возникают при изменении магнитного потока. Исход из этого, вихревые токи являются индукционными. Чем скорее магнитный поток изменяется, тем сильнее становятся вихревые токи. По проводам они не текут по определенным путям, а замыкаются в проводнике и образуют вихреобразные контуры.

Благодаря существованию вихревых токов, осуществляется скин-эффект, когда магнитный поток и переменный электрический ток распространяются по поверхностному слою проводника. Из-за нагрева вихревыми токами происходит потеря энергии, особенно в сердечниках катушек переменного тока.

Чтобы уменьшить потерю энергии для вихревых потоков применяется деление магнитных проводов переменного тока на отдельные пластины, которые изолированы друг от друга и располагаются перпендикулярно по направлению вихревых токов.

Из-за этого ограничиваются возможные контуры их путей, и стремительно уменьшается величина этих токов.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света.

Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра.

Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжения. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы.

Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы.

В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Источник: https://spravochnick.ru/fizika/elektricheskiy_tok/

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток. В металлических проводниках носителями зарядов являются свободные электроны.

С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.

При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. – Электролиз. Анионы – положительные ионы.

Перемещаются к отрицательному электроду – катоду. Катионы – отрицательные ионы. Перемещаются к положительному электроду – аноду. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах – плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах – лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению. Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.

С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники – изоляторами.

Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.

При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.

Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле. При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.

Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.

В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др.Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Источник: https://tel-spb.ru/current/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.