Действующие значения тока и напряжения

Содержание

Ток и напряжение. Виды и правила. Работа и характеристики

Действующие значения тока и напряжения

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока

  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:— амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;— мгновенное напряжение, которое выражается в определенный момент времени;— действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;— средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:

  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.

Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:

  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.

Условия возникновения электрического тока:

  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.

Формы сигнала тока

  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока

  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.

Отрицательные явления, вызываемые электрическим током

  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках.

Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:

  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного.

Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение.

На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов.

Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление.

Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление.

При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/tok-i-napriazhenie/

SA Переменный ток

Действующие значения тока и напряжения

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.

  • Переменный электрический ток — это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п.

Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира.

В США частота промышленного тока 60 Гц.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

\(e={\rm E}_{m} \cdot \sin \omega \cdot t,\)

где \({\rm E}_{m} =B\cdot S\cdot \omega\) — амплитудное (максимальное) значение ЭДС.При подключении к выводам рамки нагрузки сопротивлением R, через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

\(i=\dfrac{e}{R} =\dfrac{B \cdot S \cdot \omega }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\)

где \(I_{m} = \dfrac{B\cdot S\cdot \omega }{R}\) — амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор — электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь — обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Неподвижная часть генератора называется статором, а подвижная — ротором. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц.

Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой.

В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его.

Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р.

Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec{B}\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec{B}\) и нормали к плоскости рамки \(\vec{n}\) меняется со временем по линейному закону. Если в момент времени t = 0 угол α0 = 0 (см. рис. 1), то

\(\alpha = \omega \cdot t = 2\pi \cdot u \cdot t,\)

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

\(\Phi \left(t\right)=B\cdot S\cdot \cos \alpha =B\cdot S\cdot \cos \omega \cdot t.\)

Тогда согласно закону Фарадея индуцируется ЭДС индукции

\(e=-\Phi '(t)=B\cdot S\cdot \omega \cdot \sin \omega \cdot t = {\rm E}_{m} \cdot \sin \omega \cdot t.\)

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

\(u=U_{m} \cdot \sin \omega \cdot t.\;\;\;(1)\)

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

\(i = \dfrac{u}{R} =\dfrac{U_{m} }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\;\;\; (2)\)

где \(I_m = \dfrac{U_{m}}{R}.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.Величины Um, Im называются амплитудными значениями напряжения и силы тока. Зависящие от времени значения напряжения u и силы тока i называют мгновенными.

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения.

  • Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I.

  • Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U.

Действующие (I, U) и амплитудные (Im, Um) значения связаны между собой следующими соотношениями:

\(I = \dfrac{I_{m} }{\sqrt{2}}, \; \; \; U =\dfrac{U_{m} }{\sqrt{2}}.\)

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

\(P = U\cdot I = I{2} \cdot R = \dfrac{U{2}}{R}.\)

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

\(I=\dfrac{U}{R}.\;\;\;(3)\)

Зная мгновенные значения u и i, можно вычислить мгновенную мощность

\(p = u \cdot i,\)

которая, в отличие от цепей постоянного тока, изменяется с течением времени. С учетом уравнений (1) и (2) перепишем выражение для мгновенной мощности на резисторе в виде

\(p=U_{m} \cdot I_{m} \cdot \sin {2} \omega \cdot t=U_{m} \cdot I_{m} \cdot \dfrac{1-\cos 2\omega \cdot t}{2} =\dfrac{U_{m} \cdot I_{m} }{2} -\dfrac{U_{m} \cdot I_{m} }{2} \cdot \cos 2\omega \cdot t.\)

Первое слагаемое не зависит от времени. Второе слагаемое P2 — функция косинуса удвоенного угла и ее среднее значение за период колебаний равно нулю (рис. 2, найдите сумму площади выделенных фигур с учетом знаков).

Поэтому среднее значение мощности переменного электрического тока за период будет равно

\(\left\langle P \right\rangle =\dfrac{U_{m} \cdot I_{m} }{2}.\)

Тогда с учетом закона Ома \(\left(I_{m} =\dfrac{U_{m}}{R} \right)\) получаем:

\(\left\langle P \right\rangle = \dfrac{I_{m}{2} }{2} \cdot R=\dfrac{U_{m}{2} }{2R}. (4)\)

По определению действующих значений необходимо сравнивать мощности (количество теплоты в единицу времени) переменного и постоянного тока. Запишем уравнения для расчета мощности постоянного тока

\(P=I{2} \cdot R=\dfrac{U{2} }{R}\)

и сравним с уравнениями (4}:

\(\dfrac{I_{m}{2}}{2} \cdot R = I{2} \cdot R, \;\;\; I=\dfrac{I_{m}}{\sqrt{2}},\) \(\dfrac{U_{m}{2}}{2R} = \dfrac{U{2}}{R}, \;\;\; U=\dfrac{U_{m}}{\sqrt{2}}.\)

Литература

Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2009. — С. 46-51.

Источник: http://www.physbook.ru/index.php/SA_%D0%9F%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%82%D0%BE%D0%BA

Действующее значение переменного тока

Действующие значения тока и напряжения

Переменныйток долгое время не находил практическогоприменения.  Это было связано с тем,что первые генераторы электрическойэнергии вырабатывали постоянный ток,который вполне удовлетворял технологическимпроцессам электрохимии, а двигателипостоянного тока обладают хорошимирегулировочными характеристиками.

Однако по мере развития производствапостоянный ток все менее стал удовлетворятьвозрастающим требованиям экономичногоэлектроснабжения. Переменный ток далвозможность эффективного дробленияэлектрической энергии и изменениявеличины напряжения с помощьютрансформаторов.

Появилась возможностьпроизводства электроэнергии на крупныхэлектростанциях с последующим экономичнымее распределением потребителям,увеличился радиус электроснабжения.

Внастоящее время центральное производствои распределение электрической энергииосуществляется в основном на переменномтоке. Цепи с изменяющимися – переменными– токами по сравнению с цепями постоянноготока имеют ряд особенностей.

Переменныетоки и напряжения вызывают переменныеэлектрические и магнитные поля.

Врезультате изменения этих полей в цепяхвозникают явления самоиндукции ивзаимной индукции, которые оказываютсамое существенное влияние на процессы,протекающие в цепях, усложняя их анализ.

Переменнымтоком (напряжением, ЭДС и т.д.)называетсяток (напряжение, ЭДС и т.д.), изменяющийсяво времени. Токи, значения которыхповторяются через равные промежуткивремени в одной и той же последовательности,называются периодическими,анаименьший промежуток времени, черезкоторый эти повторения наблюдаются, –периодомТ.Для периодического тока имеем

,

  (1)

Величина,обратная периоду, есть частота, измеряемаяв герцах (Гц):

,

(2)

Диапазончастот, применяемых в технике: отсверхнизких частот (0.01¸10 Гц – в системахавтоматического регулирования, ваналоговой вычислительной технике) –до сверхвысоких (3000 ¸ 300000 МГц –миллиметровые волны: радиолокация,радиоастрономия). В РФ промышленнаячастота f= 50Гц.

Мгновенноезначение переменной величины естьфункция времени. Ее принято обозначатьстрочной буквой:

i – мгновенное значение тока ;

u–мгновенное значение напряжения ;

е-мгновенное значение ЭДС ;

р-мгновенное значение мощности .

Наибольшеемгновенное значение переменной величиныза период называется амплитудой (еепринято обозначать заглавной буквой синдексомm).

 -амплитуда тока;

 -амплитуда напряжения;

 -амплитуда ЭДС.

Значениепериодического тока, равное такомузначению постоянного тока, который завремя одного периода произведет тот жесамый тепловой или электродинамическийэффект, что и периодический ток, называютдействующимзначением периодическоготока:

,

(3)

Аналогичноопределяются действующие значения ЭДСи напряжения.

Синусоидально изменяющийся ток

Извсех возможных форм периодических токовнаибольшее распространение получилсинусоидальный ток.

По сравнению сдругими видами тока синусоидальный токимеет то преимущество, что позволяет вобщем случае наиболее экономичноосуществлять производство, передачу,распределение и использованиеэлектрической энергии.

Только прииспользовании синусоидального токаудается сохранить неизменными формыкривых напряжений и токов на всехучастках сложной линейной цепи. Теориясинусоидального тока является ключомк пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальныетоки и напряжения можно изобразитьграфически, записать при помощи уравненийс тригонометрическими функциями,представить в виде векторов на декартовойплоскости или комплексными числами.

Приведеннымна рис. 1, 2 графикам двух синусоидальныхЭДС е1ие2соответствуютуравнения:

.

Значенияаргументов синусоидальных функций иназываютсяфазамисинусоид,а значение фазы в начальный моментвремени (t=0): и-начальнойфазой ().

Величину,характеризующую скорость измененияфазового угла, называютугловойчастотой. Таккак фазовый угол синусоиды за времяодного периода Тизменяется на рад.,то угловая частота есть,гдеf–частота.

Присовместном рассмотрении двух синусоидальныхвеличин одной частоты разность ихфазовых углов, равную разности начальныхфаз, называют угломсдвига фаз.

Длясинусоидальных ЭДС е1ие2уголсдвига фаз:

.

Векторное изображение синусоидально изменяющихся величин

Надекартовой плоскости из начала координатпроводят векторы, равные по модулюамплитудным значениям синусоидальныхвеличин, и вращают эти векторы противчасовой стрелки (вТОЭ данное направление принято заположительное)с угловой частотой, равной w.

Фазовый угол при вращении отсчитываетсяот положительной полуоси абсцисс.Проекции вращающихся векторов на осьординат равны мгновенным значениям ЭДСе1ие2(рис.3).

Совокупность векторов, изображающихсинусоидально изменяющиеся ЭДС,напряжения и токи, называют векторнымидиаграммами.

Припостроении векторных диаграмм векторыудобно располагать для начальногомомента времени (t=0),чтовытекает из равенства угловых частотсинусоидальных величин и эквивалентнотому, что система декартовых координатсама вращается против часовой стрелкисо скоростью w.

Таким образом, в этой системе координатвекторы неподвижны (рис. 4). Векторныедиаграммы нашли широкое применение прианализе цепей синусоидального тока. Ихприменение делает расчет цепи болеенаглядным и простым. Это упрощениезаключается в том, что сложение ивычитание мгновенных значений величинможно заменить сложением и вычитаниемсоответствующих векторов.

Пусть,например, в точке разветвления цепи(рис. 5) общий ток равенсумме токовидвухветвей:

.

Каждыйиз этих токов синусоидален и может бытьпредставлен уравнением

и.

Результирующийток также будет синусоидален:

.

Определениеамплитудыи начальной фазыэтоготока путем соответствующих тригонометрическихпреобразований получается довольногромоздким и мало наглядным, особенно,если суммируется большое числосинусоидальных величин. Значительнопроще это осуществляется с помощьювекторной диаграммы.

На рис. 6 изображеныначальные положения векторов токов,проекции которых на ось ординат даютмгновенные значения токов дляt=0.Привращении этих векторов с одинаковойугловой скоростью wихвзаимное расположение не меняется, иугол сдвига фаз между ними остаетсяравным .

Таккак алгебраическая сумма проекцийвекторов на ось ординат равна мгновенномузначению общего тока, вектор общеготока равен геометрической сумме векторовтоков:

.

Построениевекторной диаграммы в масштабе позволяетопределить значения ииздиаграммы, после чего может быть записанорешение для мгновенного значенияпутемформального учета угловой частоты:.

Источник: https://StudFiles.net/preview/6061605/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.